Những câu hỏi liên quan
NT
Xem chi tiết
FF
Xem chi tiết
HS
4 tháng 7 2018 lúc 20:57

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b 
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 

Bình luận (0)
BT
14 tháng 8 2018 lúc 14:59

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~

Bình luận (0)
BT
14 tháng 8 2018 lúc 15:00

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~

Bình luận (0)
DD
Xem chi tiết
NL
26 tháng 8 2020 lúc 15:19

B6:

Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)

=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)

Mà theo đề bài \(5a-3b+2c=0\)

=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NL
26 tháng 8 2020 lúc 15:25

B5:

Ta có:

P+Q+R

= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7

= x2y2+2y2+7x4+7

Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)

=> \(x^2y^2+2y^2+7x^4+7\ge7\)

=> Tổng 3 đa thức P,Q,R luôn dương

=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
10 tháng 8 2021 lúc 10:38

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

Bình luận (0)
AH
10 tháng 8 2021 lúc 10:49

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

Bình luận (0)
NT
10 tháng 8 2021 lúc 14:20

Bài 6: 

Để D nguyên thì \(x-3⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)

hay \(x\in\left\{0;1\right\}\)

Bình luận (0)
4C
Xem chi tiết
NT
Xem chi tiết
CH
28 tháng 12 2017 lúc 14:32

Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây nhé.

Bình luận (0)
VV
Xem chi tiết
DH
10 tháng 7 2021 lúc 0:27

Bậc nhỏ nhất của đa thức \(P\left(x\right)\)là \(3.2=6\).

\(x=\sqrt[3]{2}+\sqrt{2}\)

\(\Leftrightarrow x-\sqrt{2}=\sqrt[3]{2}\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)^3=2\)

\(\Leftrightarrow x^3-3\sqrt{2}x^2+6x-2\sqrt{2}=2\)

\(\Leftrightarrow x^3+6x-2=3\sqrt{2}x^2+2\sqrt{2}\)

\(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)

\(\Leftrightarrow x^6+36x^2+4+12x^4-24x-4x^3=18x^4+24x^2+8\)

\(\Leftrightarrow x^6-6x^4-4x^3+12x^2-24x-4=0\)

\(P\left(x\right)=x^6-6x^4-4x^3+12x^2-24x-4\)

Nếu đa thức trên có nghiệm hữu tỉ thì nghiệm có có dạng \(\frac{p}{q}\)với \(p\)là ước của \(-4\)và \(q\)là ước của \(1\).

Nên có thể là các giá trị \(\left\{-4,-2,-1,1,2,4\right\}\)

Ta thử các giá trị trên đều thấy không phải là nghiệm của \(P\left(x\right)\).

Do đó đa thức đó không có nghiệm hữu tỉ. 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
IY
22 tháng 4 2018 lúc 14:50

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

Bình luận (0)
LN
Xem chi tiết