Cho m,n là các số nguyên dương thoả mãn: \(\sqrt{3}-\dfrac{m}{n}>0\)
CMR: \(n\sqrt{3}-m>\dfrac{1}{2m}\)
Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)và B=\(\dfrac{x-5}{x-1}\)-\(\dfrac{2}{\sqrt{x}+1}\)+\(\dfrac{4}{\sqrt{x}-1}\)với x≥0;x≠1
1. Tính giá trị của biểu thức A tại x=36
2.Chứng minh rằng B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. Đặt P=A/B.Tìm các giá trị x nguyên để \(\sqrt{P}\)<1/2
giải phương trình :
a) \(x^2-\left(1+\sqrt{2}\right)x+\sqrt{2=0}\)
b) \(\sqrt{3}x^2-\left(1-\sqrt{3}\right)x-1=0\)
c) \(\left(2+\sqrt{3}\right)x^2-2\sqrt{3}-2 +\sqrt{3}=0\)
cho 2 số dương x,y và z khác 0 thỏa : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
CMR:
\(\sqrt{x+y}=\sqrt{x+z}+\sqrt{y+z}\)
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.
Bài 1:cho hệ phương trình : (I) \(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\)
Xác định giá trị của m để nghiệm (x0;y0) của hệ phương trình (I) thỏa đk : x0+y0=1
Bài 2:Cho hệ pt \(\left\{{}\begin{matrix}mx+3y=-4\\x-2y=5\end{matrix}\right.\)
Xác định m để hệ pt có nghiệm duy nhất
Bài 3: tìm a và b biết đồ thị hàm số y=ax +b đi qua các điểm (\(\sqrt{2}\):4-\(\sqrt{2}\)) và (2;\(\sqrt{2}\))
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x^2+2y+3}+2y-3=0\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^2+xy^2-xy-y^3=0\\2\left(x^2+1\right)-3\sqrt{x}\left(y+1\right)-y=0\end{matrix}\right.\)
P=[\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] :\(\dfrac{\sqrt{x}-1}{2}\)
a)Rút gọn biểu thức trên
b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1.