Phân tích đa thức thành nhân tử:
2x^2-4xy+5y^2+10x-22y+28
1. Phân tích đa thức thành nhân tử: \(x^4-5x^2+4\)
2. tìm giá trị lớn nhất: A=\(x^2-4xy+5y^2+10x-22y+28\)
mấy sư phụ giúp em vs!!!!
câu 2 là tìm giá trị nhỏ nhất nha, ghi lộn...mấy chế giúp em vs
1) Phân tích đa thức thành nhân tử
\(x^4-5x^2+4=\left(x^2\right)^2-4x^2+4-x^2=\left(x^2-2\right)^2-x^2=\left(x^2+x-2\right)\left(x^2-x-2\right)\)
2) Tìm giá trị nhỏ nhất
\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-2y+5\right)^2\ge0\)và \(\left(y-1\right)^2\ge0\)
Nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy GTNN của A là 2 . Dấu '' = '' xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(y-1\right)^2=0\\\left(x-2y+5\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y-1=0\\x-2y+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\x=2y-5\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\x=2.1-5=-3\end{cases}}}\)
Phân tích đa thức thành nhân tử:
a) 64x3-16x2+x
b) 36-4xy+24y-x2
c) x2+10x-2010.2020
d) 25x2-121+22y-y2
e) (x2+2x)(x2+2x-2)-3
a.
$64x^3-16x^2+x=x(64x^2-16x+1)$
$=x(8x-1)^2$
b.
$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$
$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$
$=(6-x)(x+4y+6)$
c.
$x^2+10x-2010.2020$
$=x^2+10x-(2015-5)(2015+5)
$=x^2+10x-(2015^2-5^2)$
$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$
$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$
d.
$25x^2-121+22y-y^2$
$=(5x)^2-(y^2-22y+11^2)$
$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$
e.
$(x^2+2x)(x^2+2x-2)-3$
$=(x^2+2x)^2-2(x^2+2x)-3$
$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$
$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$
$=(x^2+2x+1)(x^2+2x-3)$
$=(x+1)^2[x(x-1)+3(x-1)]$
$=(x+1)(x-1)(x+3)$
a: \(64x^3-16x^2+x\)
\(=x\left(64x^2-16x+1\right)\)
\(=x\left(8x-1\right)^2\)
b: \(36-4xy+24y-x^2\)
\(=-\left(x-6\right)\left(x+6\right)-4y\left(x-6\right)\)
\(=\left(x-6\right)\left(-x-6-4y\right)\)
c: \(x^2+10x-2010\cdot2020\)
\(=x^2+2020x-2010x-2010\cdot2020\)
\(=x\left(x+2020\right)-2010\left(x+2020\right)\)
\(=\left(x+2020\right)\left(x-2010\right)\)
Tìm min:C=2x^2-4xy+5y^2+10x-22y+28
bạn sai đề nha. là x^2. 2x^2 thì k giải đc đâu
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Rightarrow MinC=2\Leftrightarrow y=1;x=-3\)
Tìm GTNN của biểu thức:
2x2-4xy+5y2+10x-22y+28
Sửa 2x ^2 thành x^2 là đúng đề
Ta có:
x2-4xy+5y2+10x-22y+28 = x2-4xy+4y2+10x-20y+25 + y2-2y+1 +2= (x-2y+5)2 + (y-1)2 +2\(\ge\)2
dấu "=" xảy ra <=> y-1 =0 và x-2y+5 = 0 ==> x= -3;y=1
ủa, cái đề này khác đề ở trên hả
Đặt biểu thức là A, ta có:
A=x2+x2-2.x.2y+(2y)2-(2y)2+5y2+10x-22y+28
A=x2+(x-2y)2+y2+10x-22y+28
A=x2+2.x.5+52-52+y2-2.y.11+112-112+28+(x-2y)2
A=(x+5)2+(y-11)2+(x-2y)2-118
-Vì 3 HĐT ở trên luôn lớn hơn hoặc bằng 0 với mọi x,y thuộc R, nên GTNN nhỏ nhất là -118 khi
(x+5)2=0=>x+5=0=>x=-5
(y-11)2=0=>y-11=0=>y=11
-Tới đây thì có vẻ nhu bạn đã cho đề sai òi
mik ko biết làm câu này x^2-7x+10
Phân tích đa thức thành nhân tử:
a) x^2+10x+25-y^2
b) 5x^3-7x^2+10x-14
c) -5y^2+30y-45
e) 4xy^2-8xyz+4xz^2
f) x^2+7x+10
k) 2x^7+6x^6+6x^5-2x^4
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5+y\right)\left(x+5-y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(x^2+2\right)\left(5x-7\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5-y\right)\left(x+5+y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(5x-7\right)\left(x^2+2\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử
\(A=4x^2+5y^2-4xy-10y+2x\)
tính gtnn của biểu thức c= x^2-4xy +5y^2+10x-22y+28
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a, 3x(2x - y) + 5y(y - 2x)
b, (x - 5)2 - 9(x + y)2
c, y2 + 2yz + z2 - xy - xz
d, x2 - 9x2y2 + y2 + 2xy
e, x2 - 10x + 24
g, 6x2 + 7x - 5
h, x2 + 4xy - 12y2
k, a4 + 3a2 + 4
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
g) \(6x^2+7x-5\)
=\(6x^2+10x-3x-5\)
=\(\left(6x^2+10x\right)-\left(3x+5\right)\)
=\(2x\left(3x+5\right)-\left(3x+5\right)\)
=\(\left(2x-1\right)\left(3x+5\right)\)