Tính
\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}+\dfrac{8}{x^2-4}\right):\dfrac{4}{x+2}\)
a\(8\left(x+\dfrac{1}{x}\right)^{2^{ }}+4\left(x^{2^{ }}+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)=\left(x+4\right)^2\)giải các phương trình\(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)
b)
ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)
Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Leftrightarrow2x^2-14=2x^2+x-10\)
\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(nhận)
Vậy: S={-4}
\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}+\dfrac{8}{x^2-4}\right):\dfrac{4}{x-2}\)
\(=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2+8.2}{2\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{4}=\dfrac{8x+16}{8\left(x+2\right)}=\dfrac{8\left(x+2\right)}{8\left(x+2\right)}=1\)
Tìm x
a, \(\dfrac{\left(x+2\right)^2}{2}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) + \(\dfrac{\left(1-2x\right)^2}{8}\) – (1 + x)2 = 0
b, \(\dfrac{\left(x+1\right)^2}{2}\) - \(\dfrac{\left(1-2x\right)^2}{3}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) - \(\dfrac{\left(5-x\right)^2}{6}\)= 0
c, (3 + x)3 – 3x2(x + 4) + (x + 2)3 = (1 – x)3 – 8
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
c.
PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$
$\Leftrightarrow 42x+42=0$
$\Leftrightarrow x=-1$
Cho \(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)
a ) Rút gọn P
b ) Tìm x để P<0
c ) Tìm x để \(P=\dfrac{1}{x}+1\)
d ) Tính P khi \(\left|2x-1\right|=3\)
e ) Tính giá trị nhỏ nhất của P
`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`
`đk:x ne 0,x ne -2`
`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`
`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`
`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`
`=-4/(x+2)^2*(x+2)/4`
`=-1/(x+2)`
`b)P<0`
`<=>-1/(x+2)<0`
Vì `-1<0`
`<=>x+2>0`
`<=>x> -2`
`c)P=1/x+1(x ne 0)`
`<=>-1/(x+2)=1/x+1`
`<=>1/x+1+1/(x+2)=0``
`<=>x+2+x(x+2)+x=0`
`<=>x^2+4x+2=0`
`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\)
`d)|2x-1|=3`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\)
`x=-1=>P=-1/(-1+2)=-1`
`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?
a) đk: \(x\ne-2;2\)
\(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)
= \(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)
= \(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)
b) Để P < 0
<=> \(\dfrac{-1}{x+2}< 0\)
<=> x +2 > 0
<=> x > -2 ( x khác 2)
c) Để P= \(\dfrac{1}{x}+1\)
<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)
<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)
<=> x2 + 4x + 2 = 0
<=> (x+2)2 = 2
<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)
d) Để \(\left|2x-1\right|=3\)
<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)
Thay x = -1, ta có:
P = \(\dfrac{-1}{-1+2}=-1\)
a) ĐKXĐ: \(x\ne2;-2\)
\(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{x+2}.\dfrac{1}{x+2}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right):\dfrac{4}{x+2}\)
\(=\dfrac{x\left(x+2\right)-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)
b) \(P< 0\Rightarrow-\dfrac{1}{x+2}< 0\Rightarrow x+2>0\Rightarrow x>-2\)
\(\Rightarrow x>-2;x\ne2\)
c) \(P=\dfrac{1}{x}+1\Rightarrow\dfrac{-1}{x+2}=\dfrac{x+1}{x}\Rightarrow-x=\left(x+2\right)\left(x+1\right)\)
\(\Rightarrow-x=x^2+3x+2\Rightarrow x^2+4x+2=0\)
\(\Delta=4^2-2.4=8\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\end{matrix}\right.\)
d) \(\left|2x-1\right|=3\Rightarrow\left[{}\begin{matrix}2x-1=3\\1-2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}P=-\dfrac{1}{2+2}=-\dfrac{1}{4}\\P=-\dfrac{1}{-1+2}=-1\end{matrix}\right.\)
TÍNH
a.\(-\dfrac{5}{4}x^4.\dfrac{8}{15}x\) b.\(-2x\left(\dfrac{3}{4}x^2-x+\dfrac{1}{2}\right)\) c.\(x\left(x-\dfrac{1}{2}\right)-\left(x-2\right)\left(x+3\right)\)
a. \(\dfrac{-5}{4}\) x4 . \(\dfrac{8}{15}\) x = \(\dfrac{-40}{60}\) x5 = \(\dfrac{-2}{3}\) x5
b. -2x\(\left(\dfrac{3}{4}x^2-x+\dfrac{1}{2}\right)\) = -\(\dfrac{-3}{2}\) x3 + 2x3 - x
c. \(x\left(x-\dfrac{1}{2}\right)\) - (x - 2)(x + 3)
= x2 - \(\dfrac{1}{2}\) x - x2 - 3x - 2x - 6
Tìm x:
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)
c) \(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)
a, đk x khác 0
<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)
b, <=> 36x +252 = -360 <=> x = -17
c. đk x khác -1
<=> (x+1)^2 = 16
TH1 : x + 1 = 4 <=> x = 3 (tm)
TH2 : x + 1 = -4 <=> x = -5 (tm)
d, đk x khác 1/2
<=> (2x-1)^2 = 81
TH1 : 2x - 1 = 9 <=> x = 5 (tm)
TH2 : 2x - 1 = -9 <=> x = -4 (tm)
a: \(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
b: =>x+7/15=-2/3
=>x+7=-10
hay x=-17
c: \(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)
hay \(x\in\left\{3;-5\right\}\)
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)=>x2=4.4=16 =>x2=42
=>x=2 hay x=-2.
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)=>\(\dfrac{x+7}{15}=-\dfrac{2}{3}\)=>x+7=-\(\dfrac{2}{3}.15\)=-10 =>x=-17
c)\(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)=>(x+1)2=2.8=16=42
=>x+1=4 hay x+1=-4
=>x=3 hay x=-5.
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)=>\(\dfrac{2x-1}{9}=\dfrac{9}{2x-1}\)=>(2x-1)2=92
=>2x-1=9 hay 2x-1=-9
=>x=5 hay x=-4.
a) (X-2)(x+3)-3(4x-2)=(x-4)\(^{^{ }2}\)
b) \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
c) \(x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
d) \(\left(2x+5\right)^2=\left(x+2\right)^2\)
e) \(x^2-5+6=0\)
g) \(2x^3+6x^2=x^2+3x\)
h) \(\left(x+\dfrac{1}{2}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\)
mọi người giúp e với ạ
\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)
\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)
\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)
\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)
Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:
\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
Tick plzz
a: Ta có: \(\left(x-2\right)\left(x+3\right)-3\left(4x-2\right)=\left(x-4\right)^2\)
\(\Leftrightarrow x^2+x-6-12x+6-x^2+8x-16=0\)
\(\Leftrightarrow-3x=16\)
hay \(x=-\dfrac{16}{3}\)
b: Ta có: \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
\(\Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\)
\(\Leftrightarrow-14x+7+4x-6=0\)
\(\Leftrightarrow10x=1\)
hay \(x=\dfrac{1}{10}\)
c: Ta có: \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow23x+70=10x+200\)
\(\Leftrightarrow x=10\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)
4,\(\dfrac{x+1}{3}\)+\(\dfrac{3\left(2x+1\right)}{4}\)=\(\dfrac{2x+3\left(x+1\right)}{6}\)+\(\dfrac{7+12x}{12}\)
5,\(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\)=4-\(\dfrac{x}{3}\)
6,\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)=1-\(\dfrac{2\left(x-1\right)}{3}\)
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\)
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\)
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)
----------------------------------------
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)
------------------------------------------
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)