Những câu hỏi liên quan
PN
Xem chi tiết
LL
21 tháng 10 2021 lúc 9:31

Áp dụng tslg trong tam giác DEF vuông tại D:

\(tanE=\dfrac{DF}{DE}=\dfrac{4}{3}\Rightarrow\widehat{E}\approx53^0\)

Bình luận (1)
QE
Xem chi tiết
NT
12 tháng 7 2021 lúc 14:12

Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(DE^2+DF^2=EF^2\)

\(\Leftrightarrow DF^2=5^2-3^2=16\)

hay DE=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền EF, ta được:

\(DK\cdot FE=DE\cdot DF\)

\(\Leftrightarrow DK\cdot5=3\cdot4=12\)

hay DK=2,4(cm)

Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:

\(DE^2=DK^2+EK^2\)

\(\Leftrightarrow EK^2=3^2-2.4^2=3.24\)

hay EK=1,8(cm)

Ta có: EK+FK=EF(K nằm giữa E và F)

nên FK=5-1,8=3,2(cm)

Bình luận (0)
NL
12 tháng 7 2021 lúc 14:12

Áp dụng hệ thức lượng:

\(DE^2=EK.EF\Rightarrow EK=\dfrac{DE^2}{EF}=1,8\left(cm\right)\)

\(KF=EF-EK=3,2\left(cm\right)\)

\(DK^2=EK.KF\Rightarrow DK=\sqrt{EK.KF}=2,4\left(cm\right)\)

Bình luận (0)
RK
12 tháng 7 2021 lúc 14:23

undefined

Bình luận (0)
MP
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
NG
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:07

a) \(EF=\sqrt{3^2+4^2}=5\)(cm)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)

b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)

Bình luận (0)
LL
Xem chi tiết
NT
19 tháng 12 2021 lúc 13:29

MP=4cm

\(\widehat{N}=53^0;\widehat{P}=37^0\)

Bình luận (0)
LH
Xem chi tiết
NM
23 tháng 10 2021 lúc 8:24

Vì DM là trung tuyến ứng với cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{5}{2}=2,5\left(cm\right)\)

Bình luận (1)
CM
Xem chi tiết
CL
23 tháng 1 2022 lúc 17:40

ta thấy 3x3+4x4=5x5 nên nó là tam giác vuông 

diện tích là     S=1/2x3x4=6(cm2)

chúc bạn học tốt

HYC-23/1/2022

Bình luận (0)
 Khách vãng lai đã xóa