Những câu hỏi liên quan
MT
Xem chi tiết
LD
Xem chi tiết
UN
12 tháng 1 2017 lúc 16:56

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

Bình luận (0)
DC
Xem chi tiết
NQ
10 tháng 11 2017 lúc 20:19

A = (2+2^2)+(2^3+2^4)+....+(2^59+2^60)

   = 2.3 + 2^3.3 + .... + 2^59 .3 = 3.(2+2^2+....+2^59) chia hết cho 3

A = (2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)

   = 2.7 + 2^4.7 + .... +2^58.7 = 7.(2+2^4+....+2^58) chia hết cho 7

Dễ thấy A chia hết cho 2 mà lại có A chia hết cho 3;7 ( cm trên )

=> A chia hết cho 2.3.7 = 42 ( vì 2;3;7 là 2 số nguyên tố cùng nhau ) 

Bình luận (0)
NN
15 tháng 11 2017 lúc 21:24

ko có cơ sở

Bình luận (0)
BL
Xem chi tiết
P4
Xem chi tiết
HD
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

Bình luận (0)
H24
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Bình luận (0)
NT
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

Bình luận (0)
PC
Xem chi tiết
PD
22 tháng 11 2015 lúc 12:21

A=21+22+23+...+261+262+263

A=(21+22+23)+...+(261+262+263)

A=14+...+261.(21+22+23)

A=14+...+261.14 chia hết cho 14

tick ủng hộ mình nha

Bình luận (0)
PD
Xem chi tiết
TH
28 tháng 12 2015 lúc 19:19

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

Bình luận (0)
NN
28 tháng 12 2015 lúc 19:25

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

Bình luận (0)
NT
Xem chi tiết
KA
7 tháng 11 2021 lúc 14:20

\(A=2+2^2+2^3+......+2^{60}\)

\(A=2^1+2^2+2^3+.......+2^{60}\)

\(A=\left(2^{60}-2^1\right):\left(2^2\right)\)

\(A=2^{58}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
7 tháng 11 2021 lúc 14:22

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+...+2^{57}\left(2+2^2+2^3\right)\)

\(=14\left(1+2^3+...+2^{57}\right)⋮14\)

Ta thấy \(\left(3,14\right)=1\)nên \(A\)chia hết cho \(3.14=42\).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
26 tháng 10 2023 lúc 17:04

\(A=2^1+2^2+2^3+...+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{58})\)

Vì \(6\cdot(1+2^2+2^4+...+2^{58})\vdots6\)

nên \(A\vdots6(dpcm)\)

Bình luận (2)
H9
26 tháng 10 2023 lúc 17:04

\(A=2^1+2^2+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=\left(2+4\right)+2^2\cdot\left(2+4\right)+...+2^{58}\cdot\left(2+4\right)\)

\(A=6+2^2\cdot6+...+2^{58}\cdot6\)

\(A=6\cdot\left(1+2^2+...+2^{58}\right)\) ⋮ 6 

Vậy A ⋮ 6

Bình luận (0)
KR
26 tháng 10 2023 lúc 17:06

`#3107.101107`

`A = 2^1 + 2^2 + 2^3 + ... + 2^60`

`= (2 + 2^2) + (2^3 + 2^4) + ... + (2^59 + 2^60)`

`= (2 + 2^2) + 2^2 * (2 + 2^2) + ... + 2^58 * (2 + 2^2)`

`= (2 + 2^2)*(1 + 2^2 + ... + 2^58)`

`= 6 * (1 + 2^2 + ... + 2^58)`

Vì `6 * (1 + 2^2 + ... + 2^58) \vdots 6`

`=> A \vdots 6`

Vậy, `A \vdots 6.`

Bình luận (0)