Cho a>1 và \(a+b\ge1\). Tim GTNN của
\(A=\dfrac{8a^2+b^2}{4a}+b^2\)
Cho a,b>0 thỏa mãn \(a+b\ge1\)
Tìm GTNN của \(Q=\dfrac{8a^2+b}{4a}+b^2\)
Xét \(a+b\ge1\Leftrightarrow b\ge1-a\)
Xét \(Q\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=\dfrac{8a^2}{4a}+\dfrac{1}{4a}-\dfrac{a}{4a}+1-2a+a^2\)
\(=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}\)\(=\left(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\right)+\dfrac{3}{4}\)
Áp dụng Cosi được \(Q\ge3\sqrt[3]{a^2\cdot\dfrac{1}{8a}\cdot\dfrac{1}{8a}}+\dfrac{3}{4}\)\(=3\sqrt[3]{\dfrac{1}{64}}+\dfrac{3}{4}=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
Vậy \(Qmin=\dfrac{3}{2}\) khi \(a=b=\dfrac{1}{2}\)
Cho a, b là số thực dương thỏa mãn a + b \(\ge1\)
Tìm GTNN: A = \(\dfrac{8a^2+b}{4a}+b^2\)
Bạn tham khảo:
Cho hai số thực a;b thay đổi thỏa mãn điều kiện \(a b\ge1\) và \(a>0\) Tìm GTNN của \(A=\frac{8a^2 b}{4a} b^2\) - Hoc24
Cho 2 số thực a,b thay đôi, thỏa mãn điều kiện \(a+b\ge1\) và \(a>0\)
Tìm gía trị nhỏ nhất của biểu thức : \(A=\dfrac{8a^2+b}{4a}+b^2\)
Từ \(a+b\ge1=>b\ge1-a>0\) ta có:
A = \(\dfrac{8a^2+b}{4a}+b^2\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)
=\(\dfrac{8a^2-a+1+4a^3-8a^2+4a}{4a}=\dfrac{4a^3-4a^2+a+4a^2-4a+1+6a}{4a}\)
= \(\dfrac{a\left(2a-1\right)^2+\left(2a-1\right)^2}{4a}+\dfrac{3}{2}=\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}+\dfrac{3}{2}\left(1\right)\)
Vì với a>0 thì\(\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}\ge0\)
Dấu = xảy ra khi a=1/2
Nên từ (1) => A\(\ge0+\dfrac{3}{2}\) hay A\(\ge\dfrac{3}{2}\)
Vậy GTNN của A=3/2 khi a=b=1/2
A = \(\dfrac{8a^2+b}{4a}+b^2\)
Ta có: a + b \(\ge\) 1 \(\Leftrightarrow\) b \(\ge\) 1 - a
\(\Rightarrow\) A \(\ge\) \(\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)
\(\Leftrightarrow\) A \(\ge\) 2a + \(\dfrac{1}{4a}\) - \(\dfrac{1}{4}\) + 1 - 2a + a2
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{4a}\) + \(\dfrac{3}{4}\)
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\)
Áp dụng BĐT Cô-si cho 3 số dương a2; \(\dfrac{1}{8a}\); \(\dfrac{1}{8a}\)
a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) \(\ge\) 3\(\sqrt[3]{\dfrac{a^2}{64a^2}}\) = 3\(\sqrt[3]{64}\) = 3.4 = 12
\(\Leftrightarrow\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) 12 + \(\dfrac{3}{4}\) = \(\dfrac{51}{4}\)
Hay A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{51}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\) a2 = \(\dfrac{1}{8a}\) \(\Leftrightarrow\) 8a3 = 1 \(\Leftrightarrow\) a3 = \(\dfrac{1}{8}\) \(\Leftrightarrow\) a = \(\dfrac{1}{2}\)
và b = 1 - a \(\Leftrightarrow\) b = 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)
Vậy MinA = \(\dfrac{51}{4}\) \(\Leftrightarrow\) a = b = \(\dfrac{1}{2}\)
Chúc bn học tốt! (ko chắc lắm đâu)
Cho hai số a. b thỏa mãn điều kiện \(a+b\ge1\) và 1>a>0
Tìm GTNN của biểu thức \(\frac{8a^2+b}{4a}+b^2\)
\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))
\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi \(a=b=\frac{1}{2}\)
cho a,b > 0 va a + b = 1 . Tim GTNN của
\(\dfrac{1}{a^3}+ab+b^3+4a^2b^2+\dfrac{1}{ab}\)
Cho hai số thực a;b thay đổi thỏa mãn điều kiện \(a+b\ge1\) và \(a>0\)
Tìm GTNN của \(A=\frac{8a^2+b}{4a}+b^2\)
\(A=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(A\ge a+1-b+\frac{1-a}{4a}+b^2\)
\(A\ge a+\frac{1}{4a}+b^2-b=a+\frac{1}{4a}+\left(b-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(A\ge a+\frac{1}{4a}-\frac{1}{4}\ge2\sqrt{\frac{a}{4a}}-\frac{1}{4}=\frac{1}{4}\)
\(A_{min}=\frac{1}{4}\) khi \(\left\{{}\begin{matrix}a=\frac{1}{2}\\b=\frac{1}{2}\end{matrix}\right.\)
Cho a,b là 2 số thay đổi thỏa mãn :\(\hept{\begin{cases}a>0\\a+b\ge1\end{cases}}\)
Tìm GTNN của bt A=\(\frac{8a^2+b}{4a}+b^2\)
\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=\left(b^2+\frac{b}{4a}+\frac{a}{2}\right)+\frac{3}{2}a\)
\(\ge3\sqrt[3]{b^2.\frac{b}{4a}.\frac{a}{2}}+\frac{3}{2}a=\frac{3}{2}a+\frac{3}{2}b=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Tìm GTNN của A\(=\frac{8a^2+b}{4a}+b^2\), \(a\ne b\), \(a+b\ge1\)và \(a>0\)
Mong mọi người giúp đỡ tui đang cần gấp . Cảm ơn mọi người !
Cho a+b>=1 ,a>0.Tìm gtnn của M= (8a^2+b)/4a +b^2