tính N = \(\dfrac{20125}{20126^2-20125.20127}\)
a/2014=b/20125=c/2016
Tìm M = 4.( a-b ) . ( b-c) - ( c-a )2
A = 1/3^2+1/4^2+1/5^2+1/6^2+...... Biết tổng A có 20125 số hạng
CMR: A<1/2
Vì A có 20125 số hạng \(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20125^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{20124\cdot20125}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20124}-\frac{1}{20125}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{20125}\Rightarrow A< \frac{1}{2}\) ( ĐPCM )
Tìm biết:
( X x 5 - 19 ) + ( X x 3 +24 ) = 125
X x 5 - 19 + X x 3 + 24 = 125
X x 5 + X x 3 = 125 - 24 +19
X x (5 + 3 ) = 120
X x 8 = 120
X = 15
( X * 5 - 19 ) + ( X +3 +24 ) = 125
X *5 - 19 + X +3 +24 = 125
X * 5 + X * 3 =125 - 24 + 19
X * 5 + X * 3 = 120
X * (5 + 3 ) =120
X * 8 = 120
X = 120 / 8
X =15
1) Tính \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}\)
2) Tính \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
1:
\(S=-\left(1-\dfrac{1}{10}+\dfrac{1}{10^2}-...-\dfrac{1}{10^{n-1}}\right)\)
\(=-\left[\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\right]\)
\(u_1=\left(-\dfrac{1}{10}\right)^0;q=-\dfrac{1}{10}\)
\(\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\)
\(=\dfrac{\left(-\dfrac{1}{10}\right)^0\left(1-\left(-\dfrac{1}{10}\right)^{n-1}\right)}{-\dfrac{1}{10}-1}\)
\(=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{-\dfrac{11}{10}}\)
=>\(S=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{\dfrac{11}{10}}\)
2:
\(S=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{n-1}\)
\(u_1=1;q=\dfrac{1}{3}\)
\(S_{n-1}=\dfrac{1\cdot\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)\)
\(1,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{10}:\left(-1\right)=-\dfrac{1}{10}\\u_1=-1\end{matrix}\right.\)
Vậy \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=-\dfrac{10}{11}\)
\(2,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{3}\\u_1=1\end{matrix}\right.\)
Vậy \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)
Dịch và chuyển sang bị động
1.Chúng tôi vừa nhận điể mừơi môn TA
2.Cô ấy sẽ chuyển đến thành phố vào thứ 2 tới
3.Anh ấy thỉnh thoảng đưa tôi đi ăn kem
4.Họ đã mua một căn biệt thự vào năm 2012
5.Anh ấy đang bơi ở một cái hồ
1. Chúng tôi vừa nhận điểm mười môn tiếng anh
→ We just received ten English subjects.
→ Ten English subjects have just been received by us.
2. Cô ấy sẽ chuyển đến thành phố vào thứ 2 tới
→ She will move to the city next Monday.
→ The city will be moved to by her next Monday.
3. Anh ấy thỉnh thoảng đưa tôi đi ăn kem
→ He occasionally takes me out for ice cream.
→ I am occasionally taken out for ice cream by him.
4. Họ đã mua một căn biệt thự vào năm 2012
→ They bought a villa in 2012.
→ A villa was bought by them in 2012.
5. Anh ấy đang bơi ở một cái hồ
→ He is swimming in a lake.
→ Swimming in a lake is being done by him
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)
\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)
\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)
\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)
\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)
\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)
Vậy giới hạn \(\left(2\right)\) không xác định.
\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)
\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)
\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)
Vậy \(lim\left(3\right)\) không xác định.
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2-n+2}{n^3+2n^2-3}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n+2}{3n^3-2n+n^2}\)
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2-n+2}{n^3+2n^2-3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1-\dfrac{1}{n}+\dfrac{2}{n^2}\right)}{n^3\left(1+\dfrac{2}{n}-\dfrac{3}{n^3}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1-\dfrac{1}{n}+\dfrac{2}{n^2}}{n\left(1+\dfrac{2}{n}-\dfrac{3}{n^3}\right)}=\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}=0\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{n+2}{3n^3+n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(1+\dfrac{2}{n}\right)}{n^3\left(3+\dfrac{1}{n}-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^2}=0\)
Bài 1: Tính tổng ( Sử dụng lệnh while....do )
A=1+\(\dfrac{1}{2}\) +\(\dfrac{1}{3}\) +.......+\(\dfrac{1}{n}\) ( n được nhập từ bàn phím )
Bài 2: Tính tổng ( Sử dụng lệnh while....do )
T=1+\(\dfrac{1}{3}\) +\(\dfrac{1}{5}\) +........+\(\dfrac{1}{n}\) ( n nhập từ bàn phím )
Bài 3: Tính tổng ( Sử dụng lệnh while....do )
A=\(\dfrac{1}{1\cdot3}\) + \(\dfrac{1}{2\cdot4}\) + \(\dfrac{1}{3\cdot5}\) +.........+\(\dfrac{1}{n\left(n+2\right)}\) ( n nhập từ bàn phím )
Giúp với mai mink ktra rồi!
Bài 1:
uses crt;
var a:real;
i,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
a:=0;
i:=1;
while i<=n do
begin
a:=a+1/i;
i:=i+1;
end;
writeln(a:4:2);
readln;
end.
Tính \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{2}{5}+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n}\)
\(=\lim\dfrac{1.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\dfrac{1}{3}}}{1.\dfrac{1-\left(\dfrac{2}{5}\right)^{n+1}}{1-\dfrac{2}{5}}}=\lim\dfrac{9}{10}.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\left(\dfrac{2}{5}\right)^{n+1}}=\dfrac{9}{10}\)