Tìm x,y sao cho :
x2-2x+2=1-\(\sqrt{x+y-2}\)
tìm các số nguyên x,y sao cho \(2x-2\sqrt{y+2}=2\sqrt{2x+1}-y\)
tìm số nguyên tố x,y sao cho x2-2x+1=6y2-2x+2
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
Chúc học tốt!
1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)
Tìm hai số nguyên tố x và y sao cho: x2 - 2x + 1= 6y2 - 2x + 2.
Tìm m để hàm số y đồng biến trên R
a, y = mx - x2 - 2x + mx2 + m
b, (m2 - 3m +2).x2 + (m - 1).x + \(\sqrt{3}\)
Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$
Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$
$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$
$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$
$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$
$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$
Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.
b.
Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:
$(m^2-3m+2)(x_1+x_2)+(m-1)>0$
Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:
$m^2-3m+2=0$ và $m-1>0$
$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$
$\Leftrightarrow m=2$
Tìm hai số nguyên tố x và y sao cho: x2–2x + 1 = 6y2-2x + 2
Cho parabol (P): y = x2 và đường thẳng (d): y = (m - 2).x + 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt x1; x2 sao cho: \(\sqrt{-x_1}=\sqrt{3x_2}\)
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-2\right)x-3=0\)
\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)
Vậy (P) cắt (d) tại 2 điểm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu
đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3)
Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)
Cho parabol (P): y = x2 và đường thẳng (d): y = (m - 2).x + 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt x1; x2 sao cho: \(\sqrt{-x_1}=\sqrt{3x_2}\)
PTHĐGĐ là:
x^2-(m-2)x-3=0
a*c<0
=>(P) luôn cắt (d) tại hai điểm pb
Theo đề, ta có: 3x2=-x1 và x1+x2=m-2
=>x1+3x2=0 và x1+x2=m-2
=>2x2=-m+2 và 3x2=-x1
=>x2=-1/2m+1 và x1=-3x2=3/2m-3
x1x2=-3
=>-1/2(m-2)*3/2(m-2)=-3
=>3/4(m-2)^2=3
=>(m-2)^2=4
=>m=4 hoặc m=0
1/ tìm m để x^2 -mx +m-2=0 có 2 nghiệm sao trị tuyệt đối ( x1 -x2) nhỏ nhất
2/tính tổng nghiêm
a/ \(\sqrt[3]{x+5}\) +\(\sqrt[3]{x+6}\) =\(\sqrt[3]{2x+11}\)
b/ x\(^2\) +\(\sqrt[3]{x^4-x^2}\) =2x+1
3/ tìm a để hệ có 1 nghiệm
x+y=6 và x^2 +y^2=a
Cho hai hàm số : (P) y = \(x^2\) và (d) y = 2mx + 2m +1 với m là tham số
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 sao cho
\(\sqrt{x1+x2}\) + \(\sqrt{3+x1.x2}\) = 2m + 1
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)