gpt \(\sqrt{2-x}+\sqrt[3]{2x^2+6x+3}=-2\)
GPT
\(\sqrt{x^2-2x+3}-\sqrt{x^2-6x+11}=\sqrt{3-x}-\sqrt{x-1}\)
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
GPT
\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)3
\(\sqrt{3x-2}-\sqrt{x-1}=2x^2-x-3\)
Trả lời :
Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế
Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế
Chắc vậy
k bt
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT: \(2x\sqrt{8x+1}+\sqrt{x^2+8}=6x\sqrt{x}+3\)
GPT: x4 - 6x + 1 = 2(x + 4)\(\sqrt{2x^3+8x^2+6x+1}\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
Đề đã mũ 4 thì thôi trong căn còn có bậc 3, nghiệm lại không đẹp ==
Mất hơn nửa quyển nháp mà không ra cái vần gì :(
gpt:
\(a,\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{6x-4}{\sqrt{x^2+4}}\)
b) \(\sqrt{\dfrac{6}{3-x}}+\sqrt{\dfrac{8}{2-x}}=6\)
GPT:
\(^{x^2}+\sqrt[3]{x^4-x^2}=2x+1\)
b.\(2x^2-6x-1=\sqrt{4x+5}\)
GPT : \(x^2+6x+2=\left(2x+x\right)\sqrt{x^2+5}\)
Em kiểm tra lại đề bài, chỗ \(2x+x\) bên vế phải