phân tích thành nhân tử
a) 3x^2(x+1)-2(x+1)
b) a(b+c)+3b + 3c
c) b(a-c)+5a - 5c
d) a(m-n)+m - n
8 Viết các biểu thức sau thành tích
a) a(b+c)+3b+3c ; b) a(c-d)+c-d ; c) b(a-c)+5a-5c
d) a(m-n)+m-n ; e) mx+my+5x+5y ; f) ma+mb-a-b
g) 4x+by+4y+bx ; h) 1-ax-x+a ; k) x^m+2-x^m
m) (a-b)^2-(b-a)(a+b) ; n) a(a-b)(a+b)-(a^2-ab+b^2)
\(a.a\left(b+c\right)+3b+3c=a\left(b+c\right)+3\left(b+c\right)=\left(b+c\right)\left(a+3\right)\)
\(b.a\left(c-d\right)+c-d=\left(c-d\right)\left(a+1\right)\)
\(c.b\left(a-c\right)+5a-5c=b\left(a-c\right)+5\left(a-c\right)=\left(a-c\right)\left(b+5\right)\)
\(d.a\left(m-n\right)+m-n=\left(m-n\right)\left(a+1\right)\)
\(e.mx+my+5x+5y=m\left(x+y\right)+5\left(x+y\right)=\left(x+y\right)\left(m+5\right)\)
\(f.ma+mb-a-b=m\left(a+b\right)-\left(a+b\right)=\left(a+b\right)\left(m-1\right)\)
\(g.4x+by+4y+bx=4x+bx+by+4y=x\left(b+4\right)+y\left(b+4\right)=\left(b+4\right)\left(x+y\right)\)
\(h.1-ax-x+a=\left(a+1\right)-x\left(a+1\right)=\left(a+1\right)\left(1-x\right)\)
\(k.x^{m+2}-x^m=x^m\left(x^2-1\right)=x^m\left(x-1\right)\left(x+1\right)\)
\(m.\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)=\left(b-a\right)^2-\left(b-a\right)\left(a+b\right)=\left(b-a\right)\left(b-a-a-b\right)=-2a\left(b-a\right)\)
\(n.a\left(a-b\right)\left(a+b\right)-\left(a^2-2ab+b^2\right)=a\left(a-b\right)\left(a+b\right)-\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab-a+b\right)\)
phân tích đa thức thành nhân tử:
a) 3x.(x-1) + 7X^2 (x-1)
b) 5x.(x-1) - 3x.(1-x)
c) -16 a^4.b^6 - 24 a^5.b^5 - 9 a^6.b^4
d)p^m+2.q-p^m+1.q^3-p^2.q^n+1+p.q^n+3
e)(x+5)^2 - 3 (x+6)
\(b,5x\left(x-1\right)-3x\left(1-x\right)=\left(5x+3x\right)\left(x-1\right)\)
\(c,-16a^4.b^6-24a^5.b^5-9a^6.b^4\)
\(=-a^4.b^4[\left(4b\right)^2+2.4.a.3.b+\left(3a\right)^2]\)
\(=-a^4.b^4\left(4b+3a\right)^2\)
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.
1 a) 2a=3b:5b=7c và 3a +5c-7b=30
b)\(\frac{x-1}{2}=\frac{x+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
c)3x=4y=6z và x-3y+2z=70
d)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=20
2 cho \(\frac{a}{b}=\frac{c}{d}\)và a;b;c;d\(\ne\)0
a)\(\frac{a}{a-b}\frac{c}{d}\)
b)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
g)\(\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3d}\)
h)\(\frac{2a+3b}{2a-3d}=\frac{2c+3d}{2c-3d}\)
b1: cmr nếu x+y+z=-3 thì (x+1)^3+(y+1)^3+(z+1)^3= 3(x+1)(y+1)(z+1)
b2: cho A+ (a^2+b^2-c^2)^2 -4a^2b^2
a) phân tích A thành nhân tử
b) cm nếu a,b,c là số đo độ dài các cạnh của 1 tam giác thì A<0
b3: cho đa thức M=(a+b)(b+c)(c+a)+abc
a/ phân tích M thành nhân tử
b/ cm nếu a,b,c thuộc z và a+b+c chia hết cho 6 thì (M-3abc) chia hết cho 6
b4: n thuộc z. cm n^3(n^2-7)^2 _ 36n chia hết cho 105
b5: xác định a,b để đa thức x^4- 3x^3+3x^2+ ax+b chia hết cho đa thức x^2-3x+4.
CÁC BẠN GIÚP MÌNH VỚI. CHIỀU PHẢI NỘP BÀI RỒI. HUHUHU :((((
1. Phân tích thành nhân tử
A) x4 + 2x3 + x2
B) x3 - x + 3x2y + 3xy2 + y3 - y
C) 5x2 - 10xy +5y2 - 20z2
2. Phân tích thành nhân tử
A) x2 + 5x -6
B) 5x2 + 5xy - x - y
C) 7x - 6x2 - 2
3.Phân tích thành nhân tử
A) x2 + 4 + 3
B) 2x2 + 3x -5
C) 16x - 5x2 - 3
4. Tìm x, bt
A) 5x ( x - 1 ) = x -1
B) 2( x + 5 ) -x2 - 5x = 0
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Phân tích thành nhân tử:
a)5y^10 - 15y^6
b)a^m+1 - 2a^m-1
c)a^m+1 - a^m
d)3x^m+2 - 6x
e)x^2m-2 + x^2m+2
Cho ba số dương a,b,c thoả mãn: a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{a}{\sqrt{b^3+5b^2-3b+18}}+\frac{b}{\sqrt{c^3+5c^2-3c+18}}+\frac{c}{\sqrt{a^3+5a^2-3a+18}}\)
Phân tích đa thức thành nhân tử:
a) (a - b)2 - 1
b) 4 - (a - b)2
c) ( x -y)2 - (m + n)2
d) (3x - 2y)2 - (2x - 3y)2
a/(a-b)2-12=(a-b-a).(a-b+1)
b/22-(a-b)2(2-a+b)(2+a-b)
c/(x-y-m-n)(x-y+m+n)
d,(3x-2y+2x-3y)(3x-2y-2x+3y)