Tìm GTNN
\(\left(x+1\right)^2+\left(x+2\right)^2+\left(x+3\right)^2+\left(x+4\right)^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTNN của các hàm số sau:
a) \(f\left(x\right)=5+x+\dfrac{1}{x}\left(x>4\right)\)
b) \(g\left(x\right)=\left(x+2\right)\left(3+\dfrac{1}{x}\right)\left(x>0\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2}{x+1}+2\right)^2\left(x\ne-1\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).
Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).
b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).
Đẳng thức xảy ra khi x = \(\sqrt{6}\).
Câu a muốn có min thì đề bài phải là \(x\ge4\) (có dấu "=")
Còn \(x>4\) thì chắc là đề sai
Tìm GTNN của hàm số \(f\left(x\right)=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\).
Giấ trị nhỏ nhất là 8
GTNN = 8 đạt khi
Cho 2 < x < 3. Tìm GTNN của \(P=\dfrac{1}{\left(x-2\right)^2}+\dfrac{1}{\left(3-x\right)^2}+\dfrac{1}{\left(x-2\right)\left(3-x\right)}\)
\(P\ge\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+\dfrac{4}{\left(x-2+3-x\right)^2}=\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+4\)
\(P\ge\dfrac{1}{2}\left(\dfrac{4}{x-4+3-x}\right)^2+4=12\)
Dấu "=" xảy ra khi \(x-2=3-x\Rightarrow x=\dfrac{5}{2}\)
Tìm GTNN của BT
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm
vì vậy mình sẽ ko cho bạn
Uk hiểu rồi từ này về sau sẽ tránh câu hỏi của bạn. Yên tâm.
Tìm GTNN của: A=\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
B=\(\left(x-1\right)^2+\left(x-3\right)^2\)
C= \(x^2-2x+y^2+7-4y\)
D= \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
Tìm GTNN của biểu thức :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
Tìm GTNN
\(\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
A=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2-36>=-36
Dấu = xảy ra khi x=0 hoặc x=-5
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c
Tìm GTNN của \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\)
Ta có: \(\left|1-x\right|+\left|x-4\right|\ge\left|1-x+x-4\right|=3\)
\(\left|2-x\right|+\left|x-3\right|\ge\left|2-x+x-3\right|=1\)
=> \(\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\ge3+1=4\)
=> \(A\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x-4\right)\ge0\\\left(2-x\right)\left(x-3\right)\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}}\)
\(\Leftrightarrow2\le x\le3\)
Vậy \(A_{min}=4\Leftrightarrow2\le x\le3\)