CM:P/S\(\dfrac{n^7+n^2+1}{n^8+n+8}\)kotối giản
Chứng minh các phân số sau tối giản:
\(\dfrac{n+7}{n+8},\dfrac{4n+7
}{n+2},\dfrac{5n+12}{3n+7}\)
a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)
Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d
⇒ d ∈ Ư (-1) = (+-1)
⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản
từ đo bạn tự làm được không?
câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1
dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc
Giải:
\(\dfrac{n+7}{n+8}\)
Gọi \(ƯCLN\left(n+7;n+8\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+8\right)-\left(n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+8}\) là p/s tối giản
\(\dfrac{4n+7}{n+2}\)
Gọi \(ƯCLN\left(4n+7;n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4.\left(n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{4n+7}{n+2}\) là p/s tối giản
\(\dfrac{5n+12}{3n+7}\)
Gọi \(ƯCLN\left(5n+12;3n+7\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}5n+12⋮d\\3n+7⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(5n+12\right)⋮d\\5.\left(3n+7\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}15n+36⋮d\\15n+35⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+36\right)-\left(15n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{5n+12}{3n+7}\) là p/s tối giản
Chúc bạn học tốt!
Chứng minh:
\(\dfrac{n^7+n^2+n}{n^8+n+1}\) chưa tối giản
n8 + n + 1 = n8 - n2 + n2 + n + 1
= n2 (n6 - 1 ) + n2 + n + 1
= n2 (n2 - 1)(n4 +n2 + 1) + n2 + n + 1
= n2 (n2 - 1)(n4 + 2n2 + 1 - n2) + n2 + n + 1
= n2 (n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n +1
Mặt khác :
n7 + n2 + 1 = n7 - n + n2 + n + 1
= (n - 1)(n6 - 1) +n2 + n + 1
= (n - 1)(n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n + 1
Vậy chúng đều có ước chung là n2 + n + 1 nên phân số đó ko tối giản
Chứng minh rằng phân số \(\dfrac{n^7+n^2+1}{n^8+n+1}\)không tối giản với mọi n thuộc Z
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Chứng minh rằng ∀n nguyên dương thì:
P = \(\dfrac{15n^2+8n+6}{30n^2+21n+13}\) là phân số tối giản
Q = \(\dfrac{n^7+n^2+1}{n^8+n+1}\) không là phân số tối giản
Bài 1:
Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)
=>30n^2+21n+13-30n^2-16n-12 chia hết cho d
=>5n+1 chia hết cho d
=>5n chia hết cho d và 1 chia hết cho d
=>d=1
=>P là phân số tối giản
bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3
C/m với mọi n thuộc Z+ thì
\(Q=\dfrac{1+n^2+n^7}{1+n+n^8}\) không tối giản
https://hoc24.vn/hoi-dap/question/488321.html
1. Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên n :
a) \(\dfrac{3n+1}{5n+2}\)
b) \(\dfrac{12n+1}{30n+2}\)
c) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)
d) \(\dfrac{2n+1}{2n^2-1}\)
2. Chứng minh rằng phân số \(\dfrac{n^7+n^2+1}{n^8+n+1}\) không tối giản với mọi số nguyên dương n .
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
Tìm STN n nhỏ nhất để các phân số sau tối giản :
\(\dfrac{7}{n+9},\dfrac{8}{n+10},...,\dfrac{31}{n+33}\)
Ta có : \(\dfrac{a}{b}\) tối giản \(\Leftrightarrow\dfrac{b}{a}\) tối giản \(\left(a;b\in N\right)\)
\(\Leftrightarrow\dfrac{7}{n+9};\dfrac{8}{n+10};..........;\dfrac{31}{n+33}\) tối giản khi và chỉ khi :
\(\dfrac{n+9}{7};\dfrac{n+10}{8};.......;\dfrac{n+33}{31}\) tối giản
\(\Leftrightarrow\dfrac{\left(n+2\right)+7}{7};\dfrac{\left(n+2\right)+8}{8};........;\dfrac{\left(n+2\right)+31}{31}\)
\(\Leftrightarrow n+2⋮̸\) \(7;8;.......;33\)
Mà \(n+2\) nhỏ nhất do \(n\) nhỏ nhất
\(\Leftrightarrow n+2=35\)
\(\Leftrightarrow n=33\)
Vậy ...
Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là các phân số tối giản:
\(\dfrac{n+7}{3};\dfrac{n+8}{4};\dfrac{n+9}{5};\dfrac{n+10}{6};\dfrac{n+11}{7}\)
Phân số đã cho có dạng a+n+4\a với a=3;4;5;6;7
Do đó muốn các phân số trên tối giản thì (a+n+4) phải không chia hết cho 3;4;5;6;7 và ƯCLN(a+n+4;a) = 1 và n+4 là số nguyên tố
⇒n+4=11(vì 11 là số nguyên tố có 2 chữ số nhỏ nhất)
⇒n=7
Vậy n=7
1. Giải thích tại sao các p/s sau đây bằng nhau:
a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)
2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho :
\(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ?
3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên)
4.Cộng cả tử và mẫu của \(\dfrac{23}{40}\)với cùng một STN n rồi rút gọn, ta được \(\dfrac{3}{4}\). Tìm số n
5.Tìm phân số có mẫu bằng 7, biết rằng khi cộng tử với 26, nhân mẫu với 5 thì giá trị của phân số đó không thay đổi
6.Cho S=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
7. Tính nhanh
M=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
8. Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
9. So sánh : A=\(\dfrac{10^8+2}{10^8-1}\); B=\(\dfrac{10^8}{10^8-3}\)
Giúp vs ~
1)
a)
\(\dfrac{-21}{28}=\dfrac{\left(-21\right):7}{28:7}=\dfrac{-3}{4}\\ \dfrac{-39}{52}=\dfrac{\left(-39\right):13}{52:13}=\dfrac{-3}{4}\)
Vì \(\dfrac{-3}{4}=\dfrac{-3}{4}\) nên \(\dfrac{-21}{28}=\dfrac{-39}{52}\)
b)
\(\dfrac{-1717}{2323}=\dfrac{\left(-17\right)\cdot101}{23\cdot101}=\dfrac{-17}{23}\\ \dfrac{-171717}{232323}=\dfrac{\left(-17\right)\cdot10101}{23\cdot10101}=\dfrac{-17}{23}\)
Vì \(\dfrac{-17}{23}=\dfrac{-17}{23}\) nên \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)
2)
Theo tính chất cơ bản của phân số ta có: \(\dfrac{a}{b}=\dfrac{a\cdot m}{b\cdot m}\) mà \(m\ne n\)
nên không thể.
Trường hợp duy nhất là khi \(a=0\)
Khi đó: \(\dfrac{a}{b}=\dfrac{0}{b}=\dfrac{0\cdot m}{b\cdot n}=\dfrac{0}{b\cdot n}=0\)
3)
Gọi ƯCLN\(\left(12n+1,30n+2\right)\) là \(d\)
Ta có:
\(12n+1⋮d\\ \Rightarrow5\cdot\left(12n+1\right)⋮d\left(1\right)\\ \Leftrightarrow60n+5⋮d\\ 30n+2⋮d\\ \Rightarrow2\cdot\left(30n+2\right)⋮d\\ \Leftrightarrow60n+4⋮d\left(2\right)\)
Từ (1) và (2) ta có:
\(\left(60n+5\right)-\left(60n+4\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d=1\)
Vậy ƯCLN\(\left(12n+1,30n+2\right)=1\)
Mà hai số có ƯCLN = 1 thì hai số đó nguyên tố cùng nhau và không có ước chung nào khác
\(\Rightarrow\dfrac{12n+1}{30n+2}\)tối giản
4)
Theo đề bài ta có:
\(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)(n \(\in\) N*)
Theo tính chất cơ bản của phân số ta có:
\(4\cdot\left(23+n\right)=3\cdot\left(40+n\right)\\ 92+4n=120+3n\\ 4n-3n=120-92\\ n=28\)
Thử lại
\(\dfrac{23+28}{40+28}=\dfrac{51}{68}=\dfrac{3}{4}\)
Vậy \(n=28\)