Những câu hỏi liên quan
HN
Xem chi tiết
H24
29 tháng 6 2021 lúc 15:02

a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)

Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d

⇒ d ∈ Ư (-1) = (+-1)

⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản 

từ đo bạn tự làm được không? 

Bình luận (0)
H24
29 tháng 6 2021 lúc 15:06

câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1

dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc

Bình luận (0)

Giải:

\(\dfrac{n+7}{n+8}\) 

Gọi \(ƯCLN\left(n+7;n+8\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+8⋮d\end{matrix}\right.\)   

\(\Rightarrow\left(n+8\right)-\left(n+7\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+8}\) là p/s tối giản

 

\(\dfrac{4n+7}{n+2}\) 

Gọi \(ƯCLN\left(4n+7;n+2\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\n+2⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4.\left(n+2\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{4n+7}{n+2}\) là p/s tối giản

 

\(\dfrac{5n+12}{3n+7}\) 

Gọi \(ƯCLN\left(5n+12;3n+7\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}5n+12⋮d\\3n+7⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3.\left(5n+12\right)⋮d\\5.\left(3n+7\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}15n+36⋮d\\15n+35⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(15n+36\right)-\left(15n+35\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{5n+12}{3n+7}\) là p/s tối giản

Chúc bạn học tốt!

Bình luận (0)
H24
Xem chi tiết
H24
9 tháng 12 2017 lúc 21:54

n8 + n + 1 = n8 - n2 + n2 + n + 1

= n2 (n6 - 1 ) + n2 + n + 1

= n2 (n2 - 1)(n4 +n2 + 1) + n2 + n + 1

= n2 (n2 - 1)(n4 + 2n2 + 1 - n2) + n2 + n + 1

= n2 (n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n +1

Mặt khác :
n7 + n2 + 1 = n7 - n + n2 + n + 1

= (n - 1)(n6 - 1) +n2 + n + 1

= (n - 1)(n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n + 1

Vậy chúng đều có ước chung là n2 + n + 1 nên phân số đó ko tối giản

Bình luận (0)
DT
Xem chi tiết
AH
8 tháng 11 2019 lúc 14:13

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
AH
26 tháng 11 2019 lúc 12:11

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
13 tháng 12 2022 lúc 23:22

Bài 1:

Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)

=>30n^2+21n+13-30n^2-16n-12 chia hết cho d

=>5n+1 chia hết cho d

=>5n chia hết cho d và 1 chia hết cho d

=>d=1

=>P là phân số tối giản

Bình luận (0)
HQ
5 tháng 11 2023 lúc 21:23

bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3

 

 

Bình luận (0)
MA
Xem chi tiết
SH
30 tháng 11 2017 lúc 22:28

Violympic toán 8

Bình luận (0)
N2
30 tháng 11 2017 lúc 21:07

https://hoc24.vn/hoi-dap/question/488321.html

Bình luận (0)
PH
Xem chi tiết
PL
26 tháng 11 2017 lúc 18:40

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

Bình luận (0)
TK
Xem chi tiết
NH
29 tháng 3 2018 lúc 22:46

Ta có : \(\dfrac{a}{b}\) tối giản \(\Leftrightarrow\dfrac{b}{a}\) tối giản \(\left(a;b\in N\right)\)

\(\Leftrightarrow\dfrac{7}{n+9};\dfrac{8}{n+10};..........;\dfrac{31}{n+33}\) tối giản khi và chỉ khi :

\(\dfrac{n+9}{7};\dfrac{n+10}{8};.......;\dfrac{n+33}{31}\) tối giản

\(\Leftrightarrow\dfrac{\left(n+2\right)+7}{7};\dfrac{\left(n+2\right)+8}{8};........;\dfrac{\left(n+2\right)+31}{31}\)

\(\Leftrightarrow n+2⋮̸\) \(7;8;.......;33\)

\(n+2\) nhỏ nhất do \(n\) nhỏ nhất

\(\Leftrightarrow n+2=35\)

\(\Leftrightarrow n=33\)

Vậy ...

Bình luận (0)
LT
Xem chi tiết
H24
21 tháng 10 2018 lúc 17:35

Phân số đã cho có dạng a+n+4\a với a=3;4;5;6;7

Do đó muốn các phân số trên tối giản thì (a+n+4) phải không chia hết cho 3;4;5;6;7 và ƯCLN(a+n+4;a) = 1 và n+4 là số nguyên tố

⇒n+4=11(vì 11 là số nguyên tố có 2 chữ số nhỏ nhất)

⇒n=7

Vậy n=7

Bình luận (0)
H24
Xem chi tiết
MV
8 tháng 5 2017 lúc 18:51

1)

a)

\(\dfrac{-21}{28}=\dfrac{\left(-21\right):7}{28:7}=\dfrac{-3}{4}\\ \dfrac{-39}{52}=\dfrac{\left(-39\right):13}{52:13}=\dfrac{-3}{4}\)

\(\dfrac{-3}{4}=\dfrac{-3}{4}\) nên \(\dfrac{-21}{28}=\dfrac{-39}{52}\)

b)

\(\dfrac{-1717}{2323}=\dfrac{\left(-17\right)\cdot101}{23\cdot101}=\dfrac{-17}{23}\\ \dfrac{-171717}{232323}=\dfrac{\left(-17\right)\cdot10101}{23\cdot10101}=\dfrac{-17}{23}\)

\(\dfrac{-17}{23}=\dfrac{-17}{23}\) nên \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)

Bình luận (0)
MV
8 tháng 5 2017 lúc 19:08

2)

Theo tính chất cơ bản của phân số ta có: \(\dfrac{a}{b}=\dfrac{a\cdot m}{b\cdot m}\)\(m\ne n\)

nên không thể.

Trường hợp duy nhất là khi \(a=0\)

Khi đó: \(\dfrac{a}{b}=\dfrac{0}{b}=\dfrac{0\cdot m}{b\cdot n}=\dfrac{0}{b\cdot n}=0\)

3)

Gọi ƯCLN\(\left(12n+1,30n+2\right)\)\(d\)

Ta có:

\(12n+1⋮d\\ \Rightarrow5\cdot\left(12n+1\right)⋮d\left(1\right)\\ \Leftrightarrow60n+5⋮d\\ 30n+2⋮d\\ \Rightarrow2\cdot\left(30n+2\right)⋮d\\ \Leftrightarrow60n+4⋮d\left(2\right)\)

Từ (1) và (2) ta có:

\(\left(60n+5\right)-\left(60n+4\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d=1\)

Vậy ƯCLN\(\left(12n+1,30n+2\right)=1\)

Mà hai số có ƯCLN = 1 thì hai số đó nguyên tố cùng nhau và không có ước chung nào khác

\(\Rightarrow\dfrac{12n+1}{30n+2}\)tối giản

Bình luận (0)
MV
8 tháng 5 2017 lúc 20:23

4)

Theo đề bài ta có:

\(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)(n \(\in\) N*)

Theo tính chất cơ bản của phân số ta có:

\(4\cdot\left(23+n\right)=3\cdot\left(40+n\right)\\ 92+4n=120+3n\\ 4n-3n=120-92\\ n=28\)

Thử lại

\(\dfrac{23+28}{40+28}=\dfrac{51}{68}=\dfrac{3}{4}\)

Vậy \(n=28\)

Bình luận (0)