Những câu hỏi liên quan
ND
Xem chi tiết
NM
13 tháng 7 2023 lúc 14:24

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

Bình luận (0)
HT
Xem chi tiết
HT
6 tháng 7 2023 lúc 15:15

phân tích đa thức thành nhân tử

 

Bình luận (0)
CN
Xem chi tiết
H9
24 tháng 6 2023 lúc 13:36

Ta có: 

\(x^4\ge0\)\(y^4\ge0\) ;\(z^4\ge0\)

\(\Rightarrow x^4+y^4+z^4\ge0\)

Ta cũng có: 

\(x^2\ge0\)\(y^2\ge0\) ;\(z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge0\)

Mà: \(x^4>x^2;y^4>x^2;z^4>z^2\)

\(\Rightarrow x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right):3\) (đpcm)

Bình luận (0)
TY
Xem chi tiết
NT
14 tháng 5 2022 lúc 19:07

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

Bình luận (0)
H24
Xem chi tiết
RH
4 tháng 9 2021 lúc 11:54

Biến đổi tương đương nhé bạn.

Bình luận (0)
NT
4 tháng 9 2021 lúc 12:52

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

Bình luận (0)
TL
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết