\(2^{x-2}.3^{y-3}.5^{z-1}=144\) hãy tính x , y , z
2^x-2*3^y-3*5^z-1=144 tìm x,y,z
Mn giúp mình với:
Cho 3 số x; y; z là 3 số khác nhau không thỏa mãn điều kiện:
x + z - x/ x = z + x - y/ y = x + y - z/ z
Hãy tính giá trị biểu thức: A=(1 + x/y) × (1 + y/z) × (1+ z/x)
sao lại không thỏa mãn điều kiện hả bn??
Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
GIẢI :
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)
Tìm x,y,z:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Phân tích 144 thành thừa số nguyên tố, ta được:
144 = 24.32
Mà theo đề:
2x-2 . 3y-3 . 5z-1 = 144
=> 2x-2 . 3y-3 . 5z-1 = 24 . 32 . 50 (Lưu ý: 50 = 1)
=> x - 2 = 4 và y - 3 = 2 và z - 1 = 0
=> x = 6 và y = 5 và z = 1
Vậy...
Ta thấy \(144=2^4.3^2\)
Ta có : \(2^{x-2}.3^{y-3}.5^{z-1}=144\)
\(=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(=>\left(x-2\right)\left(y-3\right)\left(z-1\right)=4.2.0\)
\(=>x-2=4=>x=6\)
\(=>x-3=2=>x=5\)
\(=>z-1=0=>z=1\)
Tìm x, y, z biết:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Tìm x , y , z biết :
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Tìm x, y, z biết:
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
Giải giúp ạ !!
\(2^{x-2}.3^{y-3}.5^{z-1}=144=2^4.3^2.5^0\)
\(\Rightarrow\hept{\begin{cases}x-2=4\Rightarrow x=6\\y-3=2\Rightarrow y=5\\z-1=0\Rightarrow z=1\end{cases}}\)
\(2^{x-2}.3^{y-3}.5^{z-1}=144\)
mà 144 = 24.32
=> \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.1=2^4.3^2.5^0\)
=> \(\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
Vậy...
Tìm x, y, z biết: \(2^{x-2}\).\(3^{y-3}\).\(5^{z-1}\)= 144
Các bạn ơi! Dấu chấm là dấu nhân nha!
Ta có: \(144=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}=2^4;3^{y-3}=3^2;5^{z-1}=5^0\)
Suy ra: \(x-2=4;y-3=2\) và \(z-1=0\)
Hay \(x=6;y=5\) và \(z=1\)
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t