\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\)
x + y + z = 48
Bài 3 tìm x;y ;z biết :
\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\) và x + y + z = 48
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
⇒\(\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)
⇔\(12x=15y=20z\)⇒\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
⇒\(\left\{{}\begin{matrix}x=5.4=20\\y=4.4=16\\z=3.4=12\end{matrix}\right.\)
tìm x,y,z biết \(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\)và x+y+z=48
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\left\{\begin{matrix}\frac{12x-15y}{7}=0\Rightarrow12x-15y=0\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow\frac{y}{20}=\frac{z}{15}\\\frac{20z-12x}{9}=0\Rightarrow20z-12x=0\Rightarrow\frac{z}{20}=\frac{x}{12}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
\(\Rightarrow\left\{\begin{matrix}x=75.\frac{4}{15}=20\\y=60.\frac{4}{15}=16\\z=45.\frac{4}{15}=12\end{matrix}\right.\)
Vậy: \(\left\{\begin{matrix}x=20\\y=16\\z=12\end{matrix}\right.\)
Tìm x;y;z biết
\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\) và x+y+z=48
Lời giải:
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow \left\{\begin{matrix} 12x=15y\\ 20z=12x\\ 15y=20z\end{matrix}\right.\)
\(\Leftrightarrow 12x=15y=20z\Leftrightarrow \frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{48}{\frac{1}{5}}=240\)
\(\Rightarrow \left\{\begin{matrix} x=240.\frac{1}{12}=20\\ y=240.\frac{1}{15}=16\\ z=240.\frac{1}{20}=12\end{matrix}\right.\)
Tìm x;y;z bt:
\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\)
tìm x,y,z
a,\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}\) và x+y+z=48
b, x.( x+y+z)=-12 ; y.( x+y+z)=18;z.( x+y+z)=30
Tìm x, y, z:
\(a,\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\\ b,\dfrac{12x-15y}{7}=\dfrac{20z-15x}{9}=\dfrac{15y-20z}{11}\\
va\\
x+y+z=48\)
a: =>x^2+2x-3=x^2-4
=>2x=-1
=>x=-1/2
b: \(\dfrac{12x-15y}{7}=\dfrac{20z-15x}{9}=\dfrac{15y-20z}{11}\)
\(=\dfrac{12x-15y+20z-15x+15y-20z}{7+9+11}=\dfrac{-3x}{27}=\dfrac{-x}{9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-15y}{7}=\dfrac{-x}{9}\\\dfrac{20z-15x}{9}=\dfrac{-x}{9}\\\dfrac{15y-20z}{11}=\dfrac{-x}{9}\\x+y+z=48\end{matrix}\right.\)
\(\Leftrightarrow\begin{matrix}-115x+135y=0\\20z-14x=0\\135y-180z+11x=0\\x+y+z=48\end{matrix}\)
=>\(\left(x,y,z\right)\in\varnothing\)
Tim x, y, z biet
\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\) va x+y+z=48
Ta có:
\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\)
\(=\dfrac{12x-15y+20z-12x+15y-20z}{2017+2018+2019}\)
\(=\dfrac{0}{2017+2018+2019}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x-15y=0\\20z-12x=0\\15y-20z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)\(\Rightarrow12x=15y=20z\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tích chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.5=20\\y=4.4=16\\z=4.3=12\end{matrix}\right.\)
Vậy ...
cho \(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{4}vax+y+z.\) tinh x, y, z
giup minh nhe minh dang can dap
mình nghĩ bạn đã ghi thiếu đề rồi
cái khúc "và x + y + z" ấy bạn nên cho biết = bao nhiêu mới tìm đc x , y và z
mik chỉ góp ý vậy thôi
tìm x,y,z biết: 12x-15y/7= 20z-12x/9= 15y-20z/11 và x+y+z=48