chứng minh rằng ( 2n + 1 ) và ( 3n + 1 ) là hai số ngyên tố cùng nhau
chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:
\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)
\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)
Do đó: \(d=\pm1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.
Gọi d là ƯCLN(2n+1,3n+1)
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)
=> ƯCLN(2n+1,3n+1)=1
=> đpcm
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Chứng minh rằng 2n+ 1 và 3n + 1 là hai số nguyên tố cùng nhau ( với n thuộc N )
Chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau(với n \(\notin N\)
Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)
Khi đó:
\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)
\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)
\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)
Gọi d là ƯCLN(2n+1;3n+1)
Ta có:2n+1 chia hết cho d
3n+1 chia hết cho d
Suy ra (3n+1)-(2n+1) chia hết cho d
Suy ra 3n-2n chia hết cho d
Suy ra 1 chia hết cho d
Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
gọi d là ước chung lớn nhất của 2n+1 và 3n+1
suy ra 2n+1 và 3n+1 chia hết cho d (1)
suy ra (3n+1)-(2n+1) chia hết cho d
suy ra n chia hết cho d (2)
từ (1) (2) suy ra 1 chia hết cho d
suy ra 2n+1 và 3n+1 nguyên tố cùng nhau
chứng minh rằng: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. ( với n thuộc N
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
chứng minh rằng hai số 2n+1và 3n+1 là hai số nguyên tố cùng nhau
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
2n+1 chia hết d
6n+3 chia hết cho d
3n+1 chia hết cho d
6n+2 chia hết cho d
( 6n+3) - ( 6n+2 ) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Ư(1) = 1
=> d =1 mà hai số nguyên tố có ước chung lớn nhất =1
=> 2n +1 và 3n+1 là hai số nguyên tố cùng nhau
Chứng minh rằng 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n+1;3n+1)=d
=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(2n+1;3n+1)=1
=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau
+) ta gọi a là ƯCLN(2n+1,3n+1) +)
ta có: 2n+1 chia hết cho a và 3n+1 chia hết cho a suy ra 2n+1 bằng 6n+3 chia hết cho a,suy ra 3n+1 bằng 6n+2 chia hết cho a
=>(6n+3)-(6n+2)=1=>1 chia hết cho a=> a là ước của 1
kết luận:vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau.