Những câu hỏi liên quan
NM
Xem chi tiết
DH
9 tháng 8 2017 lúc 10:17

Ta có : \(\frac{3n^3+10n^2-5}{3n+1}=n^2+3n-\frac{6}{3n+1}\)

Để \(3n^3+10n^2-5⋮3n+1\) \(\Leftrightarrow6⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow3n=\left\{-7;-4;-3;-2;0;1;2;5\right\}\)

\(\Rightarrow n=\left\{-\frac{7}{3};-\frac{4}{3};-1;-\frac{2}{3};0;\frac{1}{3};\frac{2}{3};\frac{5}{3}\right\}\)

Mà n là số nguyên nên \(n=\left\{-1;0\right\}\)

Bình luận (0)
KH
Xem chi tiết
H24
3 tháng 8 2017 lúc 21:38

Ta có |x- 3|>= 0 với mọi x

          |y- 5|>=0 với mọi y

=> |x- 3| + |y- 5| với mọi x,y

=> 2016+ |x- 3|+ |y- 5| >= 2016 với mọi x,y

Dấu = xảy ra <=> x- 3= 0 <=> x= 3

                            y- 5= 0        y= 5

Vậy GTNN của 2016+ |x- 3|+ |y- 5| là 2016 tại x= 3 và y= 5

Bình luận (0)
TD
3 tháng 8 2017 lúc 21:41

Đáp án :2016

Bình luận (0)
TB
Xem chi tiết
LD
Xem chi tiết
NM
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Bình luận (0)
NM
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Bình luận (1)
NH
Xem chi tiết
NT
21 tháng 10 2021 lúc 19:37

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
NH
21 tháng 10 2021 lúc 19:57

bạn làm rõ ra dc ko mik ko hiểu

 

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 10 2019 lúc 6:10

Chọn C

Bình luận (0)
Xem chi tiết
RH
6 tháng 10 2021 lúc 21:57

2.a) (ko phân tích được, bạn coi lại nhé)

b) phần còn lại của chứng minh là gì thế bạn?

Bình luận (0)
Xem chi tiết
Xem chi tiết
Xem chi tiết