Những câu hỏi liên quan
H24
Xem chi tiết
AH
31 tháng 1 2024 lúc 17:45

Câu 1:

Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):

$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$

$\Leftrightarrow 9y^2-42y+48=0$

$\Leftrightarrow (y-2)(9y-24)=0$

$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$

Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$

Bình luận (0)
AH
31 tháng 1 2024 lúc 17:50

Câu 3: Bạn xem lại PT(2) là -x+y đúng không?

Câu 4:

$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$

$\Leftrightarrow 3^3-9xy=7$

$\Leftrightarrow xy=\frac{20}{9}$

Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:

$X^2-3X-\frac{20}{9}=0$

$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị

$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.

 

Bình luận (0)
AH
31 tháng 1 2024 lúc 17:45

Câu 2: Hệ lỗi rồi bạn. Bạn xem lại

Bình luận (0)
MT
Xem chi tiết
HP
29 tháng 7 2021 lúc 9:46

a, Cộng vế theo vế hai phương trình ta được:

\(x^2+y^2+2xy+x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)

TH1: \(x+y=1\)

\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y=-2\)

\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)

 

Bình luận (0)
HP
29 tháng 7 2021 lúc 10:05

b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)

TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)

Đặt \(x+y=u;xy=v\)

Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)

Bình luận (0)
VT
Xem chi tiết
NT
14 tháng 11 2017 lúc 22:21

Đặt S=x+y;P=xy giải ra :V

Bình luận (0)
NH
Xem chi tiết
NL
26 tháng 7 2020 lúc 20:42

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+x+y=20\)

\(\Leftrightarrow\left(x+y\right)^2+x+y-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=3\\x+y=-5\Rightarrow xy=12\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) theo Viet đảo x; y là nghiệm:

\(t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=12\end{matrix}\right.\) theo Viet đảo x; y là nghiệm:

\(t^2+5t+12=0\left(vn\right)\)

Bình luận (0)
NL
26 tháng 7 2020 lúc 20:46

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)

Bình luận (0)
NL
26 tháng 7 2020 lúc 20:48

c/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:

\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)

Bạn tự bấm máy

Bình luận (0)
DN
Xem chi tiết
NL
12 tháng 12 2020 lúc 20:09

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

Bình luận (0)
NL
Xem chi tiết
VD
22 tháng 7 2020 lúc 20:56
https://i.imgur.com/ePPkgoo.jpg
Bình luận (0)
VD
22 tháng 7 2020 lúc 20:57
https://i.imgur.com/0lQ1nJV.png
Bình luận (0)
VD
22 tháng 7 2020 lúc 20:57
https://i.imgur.com/s6RzLH6.jpg
Bình luận (0)
NL
Xem chi tiết
NT
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
KA
Xem chi tiết
ML
Xem chi tiết
KR
Xem chi tiết
TP
28 tháng 3 2021 lúc 10:45

a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)

ĐKXĐ:...

\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)

Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:

\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)

\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)

Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)

\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)

\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)

Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)

\(\Rightarrow t-3=0\)

\(\Leftrightarrow t=3\)

\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)

Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)

\(\Leftrightarrow2y^2-1=0\)

\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)

\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)

Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)

b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)

Trừ theo vế 2 phương trình ta được:

\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)

Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)

\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.

Do đó \(x=y\)

Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy...

Bình luận (0)