Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
NT
22 tháng 4 2023 lúc 20:39

loading...  

Bình luận (1)
PB
Xem chi tiết
CT
3 tháng 5 2019 lúc 7:45

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3

Bình luận (0)
NF
Xem chi tiết
NT
24 tháng 7 2023 lúc 11:53

a: A=3n^2-n-3n^2+6n=5n chia hết cho 5

b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6

c: =n^3+2n^2+3n^2+6n-n-2-n^3+2

=5n^2+5n

=5(n^2+n) chia hết cho 5

Bình luận (0)
NA
Xem chi tiết
PN
1 tháng 8 2015 lúc 10:21

Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)

\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2

\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)

\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6

\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6

Bình luận (0)
TM
1 tháng 1 2016 lúc 17:30

Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~

Bình luận (0)
NP
21 tháng 1 2018 lúc 21:33

Có: 

n^ 3 + 3n^ 2 + 2n

= n ^3 + n^ 2 + 2n ^2 + 2n

= n ^2( n + 1 )+ 2n (n + 1)

= (2n + n ^2 )(n + 1 )

= n( n + 2)( n + 1)

= n( n + 1)(n + 2)Có n;n + 1;n + 2là 3 số nguyên liên tiếp

⇒ trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2

⇒n (n + 1)( n + 2) chia hết cho 2 × 3

⇒n (n + 1)( n + 2) chia hết cho 6

⇒n^ 3 + 3n^ 2 + 2n chia hết cho 6

Bình luận (0)
CD
Xem chi tiết
PN
2 tháng 2 2023 lúc 20:51

A=n^3+3n^2+5n+3

<=>A=n^3+n^2+2n^2+2n+3n+3

<=>A=(n^2+2n+3)(n+1)

<=>A=n(n+1)(n+2)+3(n+1)

Ta thấy, n(n+1)(n+2) là tích ba số nguyên liên tiếp nên n(n+1)(n+2) chia hết cho 6 hay n(n+1)(n+2) chia hết cho 3(1)

Mặt khác, 3(n+1) luôn chia hết cho 3 với mọi x là số nguyên(2)

Từ (1) và (2)
=>n(n+1)(n+2)+3(n+1) chia hết cho 3

Bình luận (0)
NT
2 tháng 2 2023 lúc 20:59

Đặt B=n^3+3n^2+5n

Khi n=1 thì B=1+3+5=9 chia hết cho 3

Khi n>1 thì Giả sử B=n^3+3n^2+5n chiahết cho 3

Ta cần chứng minh (n+1)^3+3(n+1)^2+5(n+1)chia hết cho 3

=n^3+3n^2+3n+1+3n^2+6n+3+5n+5

=n^3+3n^2+5n+3n^2+9n+9 chia hêt cho 3

=>B chia hết cho 3

=>A chia hết cho 3

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 4 2018 lúc 7:18

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*

Bình luận (0)
NS
Xem chi tiết
NL
Xem chi tiết
NL
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Bình luận (0)
TU
Xem chi tiết
KL
5 tháng 1 2024 lúc 7:46

Ta có:

n(n + 1)(n + 2)

= (n² + n)(n + 2)

= n³ + 2n² + n² + 2n

= n³ + 3n² + 2n

Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)

⇒ n(n + 1)(n + 2) ⋮ 3

⇒ (n³ + 3n² + 2) ⋮ 3

Ta có:

n³ + 11n

= n³ + 3n² + 2n - 3n² + 9n

= (n³ + 3n² + 2n) - 3n(n - 3)

Ta có:

3 ⋮ 3

⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)

Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)

⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3

Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n

Bình luận (0)
TU
Xem chi tiết
KL
5 tháng 1 2024 lúc 7:45

Ta có:

n(n + 1)(n + 2)

= (n² + n)(n + 2)

= n³ + 2n² + n² + 2n

= n³ + 3n² + 2n

Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)

⇒ n(n + 1)(n + 2) ⋮ 3

⇒ (n³ + 3n² + 2) ⋮ 3

Ta có:

n³ + 11n

= n³ + 3n² + 2n - 3n² + 9n

= (n³ + 3n² + 2n) - 3n(n - 3)

Ta có:

3 ⋮ 3

⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)

Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)

⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3

Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n

Bình luận (0)