C/m : \(\widehat{CAx}=\widehat{B}+\widehat{C}\)
Cho \(\widehat{xOy}\), lấy điểm A trên Ox, B trên Oy sao cho OA=Ob . Tia pg \(\widehat{xoy}\)lấy điểm C
a)CM : \(\widehat{cAx}=\widehat{cBy}\)
b . Gọi M là giao điểm của AB và OC
CMR : M là trung điểm AB
c. CM : \(OM\perp AB\)
d. CM :Co là pg \(\widehat{ACB}\)
Cho tam giác ABC có các cạnh a=BC; b=AC; c=AB. CMR:
a) \(a\widehat{A}+b\widehat{B}\ge a\widehat{B}+b\widehat{A}\)
b) \(a\widehat{A}+b\widehat{B}+c\widehat{C}\ge60^0\left(a+b+c\right)\)
c) \(a\left(\widehat{A}-60^0\right)+b\left(\widehat{B}-60^0\right)+c\left(\widehat{C}-60^0\right)\ge0\)
d) \(\frac{a\widehat{A}+b\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{b\widehat{B}+c\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{c\widehat{C}+a\widehat{A}}{\widehat{C}+\widehat{A}}\ge a+b+c\)
e) \(\frac{\left(a-b\right)\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{\left(b-c\right)\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{\left(c-a\right)\widehat{A}}{\widehat{C}+\widehat{A}}\le0\)
f) \(\frac{a\widehat{A}+b\widehat{B}+c\widehat{C}}{a+b+c}< 90^0\)
Tìm các góc của tam giác ABC biết:
a.\(3\widehat{A}=4\widehat{B}\) và \(\widehat{A}-\widehat{B}=20\)o
b.\(\widehat{B}-\widehat{C}=10^o;\widehat{C}-\widehat{A}=10^0\)
a, \(3\widehat{A}=4\widehat{B}\Leftrightarrow\dfrac{3\widehat{A}}{12}=\dfrac{4\widehat{B}}{12}\Rightarrow\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{A}-\widehat{B}}{4-3}=\dfrac{20^0}{1}=20^0\)
+)\(\dfrac{\widehat{A}}{4}=20^0\Rightarrow\widehat{A}=20^0.4=80^0\)
+)\(\dfrac{\widehat{B}}{3}=20^0\Rightarrow\widehat{B}=20^0.3=60^0\)
Xét △ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ 80^0+60^0+\widehat{C}=180^0\\ \widehat{C}=180^0-80^0-60^0=40^0\)
Vậy \(\Delta ABC\) có \(\widehat{A}=80^0;\widehat{B}=60^0;\widehat{C}=40^0\)
a) Gọi số đo các góc lần lượt là x,y ( x,y > 0 )
Theo bài ra ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}\) và \(x-y=20^0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x-y}{4-3}=\dfrac{20^0}{1}=20^0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=20^0\Rightarrow x=80^0\\\dfrac{y}{3}=20^0\Rightarrow x=60^0\end{matrix}\right.\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
mà \(\widehat{A}=80^0;\widehat{B}=60^0\)
\(\Rightarrow80^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow140^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-140^0\)
\(\Rightarrow\widehat{C}=40^0\)
Vậy ........................
cho \(\Delta ABC,Ax\)là tia đối AB,Ay là tia pg \(\widehat{CAx}\).Hai tia pg của \(\widehat{B},\widehat{C}\)cắt nhau tại I. CMR \(\widehat{BAI}=\widehat{BIC}\)
Cho hai tam giác ABC và A’B’C’ thỏa mãn \(AB = 2,AC = 3,A'B' = 6,A'C' = 9\) và \(\widehat A = \widehat {A'}\). Chứng minh \(\widehat B = \widehat {B'},\,\,\widehat C = \widehat {C'}\).
Ta thấy
\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{2}{6} = \frac{1}{3}\\\frac{{AC}}{{A'C'}} = \frac{3}{9} = \frac{1}{3}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\end{array}\)
Xét tam giác ABC và tam giác A’B’C’ có:
\(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\) và \(\widehat A = \widehat {A'}\)
\( \Rightarrow \Delta ABC \backsim \Delta A'B'C'\) (c-g-c)
\( \Rightarrow \)\(\widehat B = \widehat {B'},\,\,\widehat C = \widehat {C'}\)
1.Cho hình 16:
a) Cho biết \(Ax//Cy.So\) \(sánh \)\(\widehat{ABC}\) với \(\widehat{A}\) và \(\widehat{C}\)
b) Cho biết \(\widehat{ABC}\)=\(\widehat{A}\) và\(\widehat{C}\) . Chứng tỏ rằng \(Ax//\) Cy
Cho \(\widehat{xOy}\)khác góc bẹt.Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia phân giác của \(\widehat{xOy}\)lấy điểm C.CMR:
a)CA=CB.
b)\(\widehat{CAx}=\widehat{CBy}\)
c)OC là đường trung trực của AB
Cho $\widehat{x O y}=90^{\circ}$, vẽ hai tia $O A,$ $O B$ ở trong góc đó sao cho $\widehat{x O A}=\widehat{y O B}=60^{\circ}$. Trên nửa mặt phẳng bờ $O x$ chứa tia $O y$, vẽ tia $O M$ sao cho $O y$ là tia phân giác của $\widehat{M O B}$.
a) Chứng minh tia $O A$ là tia phân giác $\widehat{y O B}$, tia $O B$ là tia phân giác $\widehat{x O A}$.
b) Chứng minh $O M \perp O A$.
cửa hàng bán được một tạ rưỡi gẹo tẻ và gạo nếp ; trong đó 25% là gạo nếp. hỏi của hàng bán mỗi loại bao nhiêu ki-lô-gam gạo
a)xOy=xOA+AOy(vì là 2 góc kề bù)
90=60+AOy
AOy=90-60
AOy=30
=> OA là tia phân giác của yOB
xOy=yOB+BOA(vì là 2 góc kề bù)
90=60+BOA
BOA=90-60
BOA=30
=>OB là tia phân giác của xOA(vì tia phân giác bằng 60:2=30)
b)
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Cho \(\Delta ABC\) có \(\widehat{B}=\widehat{C}\),kẻ Ax là tia đối của tia AB , tia Cy là tia đối của tia CB , tia Az là phân giác của góc \(\widehat{CAx}\). Hai tia phân giác của hai góc \(\widehat{CAz}\) và \(\widehat{ACy}\) cắt nhau tại E . tính số đo góc \(\widehat{AEC}\)?