Những câu hỏi liên quan
LL
Xem chi tiết
CG
Xem chi tiết
DX
Xem chi tiết
NT
28 tháng 3 2021 lúc 11:47

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

Bình luận (0)
KN
Xem chi tiết
LG
18 tháng 6 2019 lúc 18:10

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

Bình luận (0)
LD
Xem chi tiết
DX
Xem chi tiết
AH
23 tháng 5 2021 lúc 20:57

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

Bình luận (0)
FA
Xem chi tiết
NT
23 tháng 5 2022 lúc 23:05

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bình luận (0)
BT
Xem chi tiết
TU
Xem chi tiết
PH
5 tháng 10 2016 lúc 12:39

\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]=\left[\left(n^2+2n\right)\left(n+1\right)\right]=\left[n\left(n+2\right)\left(n+1\right)\right]\)

ta có n(n+1)(n+2) là 3 số tự nhiên liên tiếp mà  3 số tự nhiên liên tiếp luôn  chia hết cho 6

Bình luận (0)