cho hai số x,y thực dương thỏa mãn x^3+y^3=xy- 1/27 tính giá trị bt (x+y+ 1/3)^3-3/2(x+y)+2016
Cho 2 số thực x,y dương thỏa mãn \(x^3+y^3=xy-\frac{1}{27}\)
Tính giá trị của biểu thức P=\(\left(x+y+\frac{1}{3}\right)^3-\frac{3}{2}\left(x+y\right)+2016\)
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
cho x,y là số thực dương thỏa mãn x^3+y^3=xy-1/27
tính giá trị của biểu thức P=(x+y+1/3)^3-3/2(x+y)+2018
chịu but Merry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry Christmas
Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)
Tính giá trị của x/y^2
đưa nó vế dạng a^3 + b^3 + c^3 = 3abc
Ta có :
\(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)
⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0
⇔ \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0
⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0
TH1 :
x + y + \(\dfrac{1}{3}\) = 0
⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)
TH2 :
\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)
⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0
⇒ \(x-\dfrac{1}{3}\) = 0
\(y-\dfrac{1}{3}\) = 0
\(x-y\) = 0
⇔ x = y = \(\dfrac{1}{3}\)
Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :
\(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)
= \(\dfrac{1}{3}\) . 9
= 3
\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)
Đặt \(f_{\left(x\right)}=ax^2+bx+c\left(a\ne0\right)\)
\(f_{\left(x\right)}=x\leftrightarrow ax^2+bx+c=x\leftrightarrow ax^2+\left(b-1\right)x+c=0\)
\(\Delta=\left(b-1\right)^2-4ac< 0\)
\(f_{\left(f_{\left(x\right)}\right)}=x\leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)
\(\leftrightarrow\left(a^2x^2+a\left(b+1\right)x+ac+b+1\right)\left(ax^2+\left(b-1\right)x+c\right)=0\)
Do\(\left(ax^2+\left(b-1\right)x+c\right)\ne0\)
\(\leftrightarrow a^2x^2+a\left(b+1\right)x+ac+b+1=0\)
\(\Lambda=\left[a\left(b+1\right)\right]^2-4a^2\left(ac+b+1\right)=a^2\left[\left(b+1\right)^2-4\left(ac+b+1\right)\right]=a^2\left[\left(b-1\right)^2-4ac-4\right]< 0\)
-> đpcm
Cho x, y là hai số thực thỏa mãn: x^2+xy+y^2= 3(y-1). Tính giá trị của biểu thức: A= (2x+y-1)^2016+(x-y+2)^2017+1009y
cho x,y là hai số thực dương thỏa mản x3+y3=xy-\(\dfrac{1}{27}\)
tính giá trị của biểu thức p=\(\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2021\)
\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)
\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)
cho x, y là 2 số thực dương thỏa mãn x^3 + y^3 = xy. 1/27
tính giá trị biểu thức P= (x+y+1/3)^3 - 3/2 .(x+y) + 2016
Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)
Tính giá trị của x/y^2
\(\frac{1}{9}\)
Cho hai số thực dương x,y, thỏa mãn: 2016/x + 1=2016/y và x + 2y = 7056/3. Tính x/y
Thì ra cx có ng k hiểu thầy nói gì giống mình
cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức A=x^3/(1+y)+y^3/(1+x)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)