H24

Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)

Tính giá trị của x/y^2

DK
3 tháng 6 2021 lúc 10:28

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

Bình luận (0)
DH
3 tháng 6 2021 lúc 11:00

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

Bình luận (2)
DK
7 tháng 6 2021 lúc 17:48

Đặt \(f_{\left(x\right)}=ax^2+bx+c\left(a\ne0\right)\)

\(f_{\left(x\right)}=x\leftrightarrow ax^2+bx+c=x\leftrightarrow ax^2+\left(b-1\right)x+c=0\)

\(\Delta=\left(b-1\right)^2-4ac< 0\)

\(f_{\left(f_{\left(x\right)}\right)}=x\leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)

\(\leftrightarrow\left(a^2x^2+a\left(b+1\right)x+ac+b+1\right)\left(ax^2+\left(b-1\right)x+c\right)=0\)

Do\(\left(ax^2+\left(b-1\right)x+c\right)\ne0\)

\(\leftrightarrow a^2x^2+a\left(b+1\right)x+ac+b+1=0\)

\(\Lambda=\left[a\left(b+1\right)\right]^2-4a^2\left(ac+b+1\right)=a^2\left[\left(b+1\right)^2-4\left(ac+b+1\right)\right]=a^2\left[\left(b-1\right)^2-4ac-4\right]< 0\)

-> đpcm

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BT
Xem chi tiết
DT
Xem chi tiết
HT
Xem chi tiết
KS
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
SH
Xem chi tiết
VT
Xem chi tiết