rút gọn
(3x + 1 )^2 + ( 3 - x)^2
rút gọn các biểu thức:
a) (x-2)2-(2x-1)2+(3x-1)(x-5)
b) (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
a (x+3)^2 +x(2x+5y^2)
b (3x-2)^2 - (3x-1) (3x+1)
rút gọn biểu thức
\(a,=x^2+6x+9+2x^2+5xy^2=3x^2+6x+5xy^2+9\\ b,=9x^2-12x+4-9x^2+1=-12x+5\)
b: \(=9x^2-12x+4-9x^2+1=-12x+5\)
Rút gọn A = \(\dfrac{3x}{x-1}\)+\(\dfrac{2}{x+1}\)+\(\dfrac{3-3x-2x^2}{x^2-1}\)
\(A=\dfrac{3x}{x-1}+\dfrac{2}{x+1}+\dfrac{3-3x-2x^2}{x^2-1}.\) \(\left(ĐKXĐ:x\ne1;x\ne-1\right).\)
\(A=\dfrac{3x\left(x+1\right)+2\left(x-1\right)+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{3x^2+3x+2x-2+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}.\)
1) rút gọn
a) \(\dfrac{x^2+3x-y^2-3y}{x^2-y^2}=\)
b) \(\dfrac{x^3+3x^2-2}{x^3+3x+4}=\)
\(b,\dfrac{x^3+3x^2-2}{x^3+3x+4}=\dfrac{x^3+x^2+2x^2+2x-2x-2}{x^3+x^2-x^2-x+4x+4}\\ =\dfrac{x^2\left(x+1\right)+2x\left(x+1\right)-2\left(x+1\right)}{x^2\left(x+1\right)-x\left(x+1\right)+4\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^2+2x-2\right)}{\left(x+1\right)\left(x^2-x+4\right)}=\dfrac{x^2+2x-2}{x^2-x+4}\)
\(a,\dfrac{x^2+3x-y^2-3y}{x^2-y^2}=\dfrac{\left(x^2-y^2\right)+\left(3x-3y\right)}{x^2-y^2}\\ =\dfrac{\left(x-y\right)\left(x+y\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y+3}{x+y}\)
Hãy rút gọn:
-3x(x+2)^2+(x+3)(x+1)(x-1)-(2x-3)^2
\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\\ =-3x\left(x^2+4x+4\right)+\left(x+3\right)\left(x^2-1\right)-\left(4x^2-12x+9\right)\\ =-3x^3-12x^2-12x+x^3-x+3x^2-3-4x^2+12x-9\\ =-2x^3-13x^2-x-12\)
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
1 Rút gọn
\(\dfrac{x^3-3x^2+3x-1}{1-x+x^2y-xy}\)
\(=\dfrac{\left(x-1\right)^3}{xy\left(x-1\right)+\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{xy+1}\)
\(\dfrac{x^3-3x^2+3x-1}{1-x+x^2y-xy}=\dfrac{\left(x-1\right)^3}{\left(xy-1\right)\left(x-a\right)}=\dfrac{\left(x-1\right)^2}{xy-1}\)
rút gọn (x^2-2)(1-x)+(x+3)(x^2-3x+9)
\(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
\(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
1) Rút gọn
a) (3x - 2)2 - (1+ 5x)2
b) (3x + 4)(3x - 4) - (5 - x)2
c) (\(\dfrac{1}{2}\)x + 4)2 - (\(\dfrac{1}{2}\)x + 3)(\(\dfrac{1}{2}\)x - 3)
a) (3x - 2)2 - (1 + 5x)2
= (3x - 2 - 1 - 5x)(3x - 2 + 1 + 5x)
= (-2x - 3)(8x - 1)
b) (3x + 4)(3x - 4) - (5 - x)2
= (3x)2 - 42 - (25 - 10x + x2)
= 9x2 - 16 - 25 + 10x - x2
= 8x2 + 10x - 41
c) \(\left(\dfrac{1}{2}x+4\right)^2-\left(\dfrac{1}{2}x+3\right)\left(\dfrac{1}{2}x-3\right)\)
\(=\left(\dfrac{1}{2}x\right)^2+2.\dfrac{1}{2}x.4+4^2-\left[\left(\dfrac{1}{2}x\right)^2-3^2\right]\)
\(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9\)
\(=4x+25\)
a: =9x^2-12x+4-25x^2-10x-1
=-16x^2-22x+3
b: =9x^2-16-x^2+10x-25
=8x^2+10x-41
c: \(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9=4x+25\)
rút gọn biểu thức (3+x/3-x+2x/3+x -4x^2-3x-9/x^2-9):(2/3-x -x-1/3x-x^2)
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)