Tính nhanh A = \(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{399}\)
\(\frac{4^2}{15}.\frac{5^2}{24}.\frac{6^2}{35}.....\frac{20^2}{399}\) tính nhanh
\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}......\frac{20.20}{19.21}\)
\(=\left(\frac{4.5...20}{3.4....19}\right).\left(\frac{4.5...20}{5.6....21}\right)\)
\(=\frac{20}{3}.\frac{4}{21}\)
\(=\frac{80}{63}\)
\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}.....\frac{20.20}{19.21}\)
=\(\left(\frac{4.5...20}{3.4...19}\right).\left(\frac{4.5.....20}{5.6....21}\right)\)
=\(\frac{20}{3}.\frac{4}{21}\)=\(\frac{80}{63}\)
hok tốt
A=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{19\times21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{7}{21}-\frac{1}{21}\)
\(=\frac{6}{21}\)
Rút gọn kết quả là \(\frac{2}{7}\), k mk nha mk trả lời đầu tiên đó
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+....+\frac{2}{399}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}=\frac{2}{7}\)
Tính giá trị biểu thức:
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+....+\frac{2}{399}\)
ta có
A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{21}\right)\)
=\(\frac{4}{7}\)
\(A=\)\(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{19.21}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
Tính nhanh:
\(G=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(H=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(I=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{120}{121}\)
Ta có: \(G=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
Tính tổng: \(y=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(y=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
mình thắc mắc quy luật của phép tính trên là gì : 15 -> 35 -> 63 ... -> 399 ?
Quy luật la cac so o duoi mau cach nhau 2 don vi ( cach nhau mot so bang tu):
2/15=2/3.5 ( 3 va 5 cach nhau 2don vi)
2/35=2/5.7 ( 5 va 7 cach nhau 2 don vi)
.........
(Cai nay minh gui cho ban Duy Thanh nhe!!!!!!!!!!!!!!!!!!!)
Tính nhanh: \(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+....+\frac{400}{399}\)
\(=1+\frac{1}{3}+1+\frac{1}{15}+...+1+\frac{1}{399}.\)
\(=10+\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
=\(10+\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
=\(10+\frac{1}{2}\left(1-\frac{1}{21}\right)=10+\frac{1}{2}.\frac{20}{21}=\frac{220}{21}\)
Bài 1: Tính bằng cách hợp lí nhất.
a.\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
b.\(\frac{30}{51}-\frac{20}{52}+\frac{14}{34}-\frac{56}{91}-2\)
c.\([\frac{1}{3}+\frac{12}{67}+\frac{13}{41}]-[\frac{79}{67}-\frac{28}{41}]\)
d.\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+...+\frac{2}{399}\)
Ai nhanh mik tick 3 cái, mik dg cần gấp
Tính A=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{65}+...+\frac{2}{399}\) E=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
=>\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
=>\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
=>\(A=\frac{1}{3}-\frac{1}{21}\)
=>\(A=\frac{2}{7}\)
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)+...+\(\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)