Tìm GTNN của biểu thức: B= \(x-2\sqrt{x+1}+3\)
CẦN GẤP Ạ !!!!!!!!!!!!!!!!!!!!
Tìm GTNN của biểu thức Q= \(\sqrt{x-1}-12\)
GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP Ạ
đk : x>= 1
Q = \(\sqrt{x-1}-12\)
với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)
Dấu ''='' xảy ra khi x = 1
Cho biểu thức:
11/ Cho biểu thức:
\(P=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) rút gọn P
b) Tìm GTNN của biểu thức \(\frac{2}{P}+\sqrt{x}\)
giúp mk với, mk cần gấp ạ
đkxđ \(x\ne1;x\ge0\)
\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)
11/ Cho biểu thức:
\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) rút gọn P
b) Tìm GTNN của biểu thức \(\dfrac{2}{P}+\sqrt{x}\)
Helppp meeee!! cần gấp ạ
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Cho biểu thức:
\(Q=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a) Rút gọn Q
b) Tìm GTNN của Q
c) Tìm các số nguyên x để \(\frac{3Q}{\sqrt{x}}\) nhận giá trị nguyên
Giúp mk vs ạ, mình cần gấp
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
Cho biểu thức A=\((\sqrt{8-\sqrt{12}})(\sqrt{2}+\sqrt{3})\) B=\(\frac{1}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\)
a) Tính giá trị của biểu thức A
b) Tìm x để A=B
Mình đang cần gấp, mọi người giúp với ạ !
a)Tìm GTNN của biểu thức; A=|x+7|+|x-3|
b)Tìm giá trị nguyên của x để biểu thức B=7-x/x+1 đạt GTNN
Mình cần câu trả lời gấp
1. Tìm GTNN của biểu thức: A= với
2. Tìm GTLN của biểu thức B= với
giúp mình với ạ, đg cần gấp ạ
Câu này em đã hỏi rồi
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1gi... - Hoc24
tìm GTNN của \(A=\sqrt{x^2+x+1}+\)\(\sqrt{x^2-x+1}\)
Ai thức sớm thì giúp mình với ạ, mình cần gấp
\(A^2=2\left(x^2+1\right)+2\sqrt{\left(x^2+1\right)^2-x^2}.\)
\(=2\left(x^2+1\right)+2\sqrt{x^4+x^2+1}\)
Vì \(x^2\ge0\)\(\Rightarrow A^2\ge2+2=4\)\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi x=0