\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)hãy tính x+y
m.n giải hộ mk bài này vs
\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
giải hộ mk hpt này vs , mk cảm ơn
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
Giải giùm mình bài này
$\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{y-x}\right].\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}$
\(\)
ghi đúng đó nhưng do nó ko hiển thị dc
giải hộ mình bài này vs , cám ơn nhe :3
\(P=\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
BẠN LÀM CKO CÁI MẪU TRONG DẤU NGOẶC THỨ NHẤT THÀNH HẰNG ĐẲNG THỨC SỐ 3 RỒI LÀM ,..
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Bài 1:
Cho \(x=\frac{\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)
Tính \(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)
Giải giúp mk vs ạ thanks m.n nhìu nà !!!!! :)))
Ta có
\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)
Thế vào ta được
\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)
\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)
Giải hộ mk vs :((\(\left\{{}\begin{matrix}\frac{3}{\sqrt{x+1}}-\frac{2}{\sqrt{y-2}}=1\\\frac{5}{\sqrt{x+1}}+\frac{3}{\sqrt{y-2}}=8\end{matrix}\right.\)
m.n ơi cứu mkgiúp mk bài này vs mk ko bt trình bày bài giải s cả
Cho hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x+2}-3}{x-1}\\x^2-1\end{matrix}\right.\) khi \(\left\{{}\begin{matrix}x\ge2\\x< 2\end{matrix}\right.\) Tính P=f(2) + f(-2) bằng bao nhiêu?
A. P=\(\dfrac{8}{3}\) B. P=4 C. P=6 D.P=\(\dfrac{5}{3}\) m.n giúp mk vs chọn đáp án r giải chi tiết ra giúp mk đc ko? tại mk cần nhất là lời giải chi tiết ak để mk hiểu thêmmong m.n giúp mk
hiện tại mk cần lời giải rất gấp ak CẢM ƠN M.N RẤT NHIỀU
Do \(2\in[2;+\infty)\Rightarrow\) khi \(x=2\) thì \(f\left(x\right)=\dfrac{2\sqrt{x+2}-3}{x-1}\Rightarrow f\left(2\right)=\dfrac{2\sqrt{2+2}-3}{2-1}=1\)
\(-2\in\left(-\infty;2\right)\) \(\Rightarrow\) khi \(x=-2\) thì \(f\left(x\right)=x^2-1\Rightarrow f\left(-2\right)=\left(-2\right)^2-1=3\)
\(\Rightarrow P=1+3=4\)
giúp mik bài này vs m.n!
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)\(\left(x,y\in R\right)\)
m.n giúp mik bài này vs ạ!
\(\)\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\left(x,y\in R\right)}\)