Cho hệ phương trình
X+my=3m
Mx+y=2M+y
Tìm m để phương trình có nghiệm duy nhất và là các số nguyên
Cho hệ phương trình x + my =2m hoặc mx + y = 1-m (m là tham số )
1.Tìm các giá trị của m để hệ phương trình :
a)Có nghiệm duy nhất. Tìm nghiệm duy nhất đó
b)Vô nghiệm
c)Vô số nghiệm
2.Trong trường hợp hệ phương trình có nghiệm duy nhất (x,y)
a)Hãy tìm giá trị m nguyên để x và y cùng nguyên
b)tìm hệ thức liên hệ giữa x và y không phụ thuộc m
cho hệ phương trình {mx+y=3m-1 và x+my+ m+1 (m là tham số ) tìm các giá trị tham sỗ của m để hệ phương trình: a) có nghiệm duy nhất, b) vô nghiệm
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)tìm m nguyên sao cho hệ phương trình có nghiệm duy nhất (x;y) mà x;y đều là số nguyên
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+m^2y=m^2+m\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2-1\right)=m^2+m-3m+1\\x+my=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-2m+1}{\left(m-1\right)\left(m+1\right)}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\cdot\left(m+1\right)}=\dfrac{m-1}{m+1}\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-\dfrac{m^2-m}{m+1}=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
Để x,y đều là số nguyên thì \(\left\{{}\begin{matrix}m-1⋮m+1\\3m+1⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m+1-2⋮m+1\\3m+3-2⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2⋮m+1\\-2⋮m+1\end{matrix}\right.\)
=>\(m+1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{0;-2;1;-3\right\}\)
mà \(m\notin\left\{1;-1\right\}\)
nên \(m\in\left\{0;-2;-3\right\}\)
cho hệ phương trình : x+my=m+1
mx+y=3m-1 ( m là tham số )
a.giải hệ phương trình với m =-2
b. tìm m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x2-y2=4
a: Thay m=-2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
\(x^2-y^2=4\)
=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)
=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)
=>\(8m^2+8m+2=4\left(m+1\right)^2\)
=>\(8m^2+8m+2-4m^2-8m-4=0\)
=>\(4m^2-2=0\)
=>\(m^2=\dfrac{1}{2}\)
=>\(m=\pm\dfrac{1}{\sqrt{2}}\)
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
Cho hệ phương trình: x + m y = m + 1 1 m x + y = 3 m - 1 2 Tìm số nguyên m để hệ phương trình có nghiệm duy nhất (x; y) mà x, y đều là số nguyên.
A. m ∈ {-3; -2}
B. m ∈ {-3; -2; 0; 1}
C. m ∈ {-3; -2; 0}
D. m = -3
cho hệ phương trình y = 2m - mx và x = 1 + m - my (m là tham số). Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x > 2 ; y > 1
cho hệ phương trình 2x+y=8,4x+my=2m+18
a) Tim m để hệ phương trình có nghiệm duy nhất.
b) Tim m nguyên để hệ phương trình có nghiệm duy nhất là các số nguyên.
c giả sử x=a,y=b là nghiệm duy nhất của hệ.tìm m để 2a-3b>0
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
Cho hệ phương trình:
\(\int^{x+my=2}_{mx-2y=1}\)
a,giải hệ phương trình trên khi m=2
b,Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) mà x>0 và y<0
b,Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) mà x;y là các số nguyên
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^