chứng tỏ rằng hiệu sau khong chia het cho 2:
(14n+12n+10n)-(11n+9n+7n)
Chứng minh rằng mọi số tự nhiên n, các phân số sau là các phân số tối giản
a) A=2n+1/4n+3. B=14n+1/12n+7. C=7n+4/9n+5
BAI 1: TIM SO TU NHIEN N DE MOI CAP SO SAU LA SO NGUYEN TO:
A, 7N+13 VA 2N+4
B, 12N+5 VA 9N+4
BAI 2: TIM * DE (81**)CHIA HET CHO 6;7;13
PLEASE GIUP MK.........
Các phân số sau viết được dưới dạng số thập phân nào
C:7n—2/7n
d:n+1/4
E:3n2+3n/10n
F:11n^2+11n/2n+2
a; 10n2+9n+3chia hết cho2n+5
b; 4-9n-7n2chia hết cho 3n+5
a: \(\Leftrightarrow10n^2+25n-16n-40+43⋮2n+5\)
\(\Leftrightarrow2n+5\in\left\{1;-1;43;-43\right\}\)
hay \(n\in\left\{-2;-3;19;-24\right\}\)
b: \(\Leftrightarrow7n^2+9n-4⋮3n+5\)
\(\Leftrightarrow21n^2+27n-12⋮3n+5\)
\(\Leftrightarrow21n^2+35n-8n-\dfrac{40}{3}+\dfrac{4}{3}⋮3n+5\)
\(\Leftrightarrow3n+5\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-2;-1;-3\right\}\)
tim cac so nguyen n sao cho 10n3-23n2+14n-5 chia het cho 2n-3
Cmr
a)\(3n^4-14n^3+21n^2-10n\) chia hết cho 24 với n thuộc Z
b)\(n^2+11n+39\) chia hết cho 49 với n thuộc Z+
1 nhân 0 bằng 0 vậy là do 0 nhân với số nào cx bằng 0 hay do 1 nhân với số nào cx bằng chính số đo
Bài 2 : Chứng minh các số sau nguyên tố cùng nhau :
a ) 7n + 10 và 5n + 7
b ) 14n + 3 và 21n + 4
c ) 2n + 1997 và 2n + 1999
d ) 14n + 5 và 21n + 4
e ) 12n + 2 và 30n + 1
a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
Theo bài ra ta có : 7n + 10 chia hết cho d
=> 5 ( 7n + 10 ) chia hết cho d
=> 35n + 50 chia hết cho d ( 1 )
5n + 7 chia hết cho d
=>7 ( 5n + 7 ) chia hết cho d
=> 35n + 49 chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 1 chia hết cho d
Vậy .....
b ) 14n + 3 và 21n + 4
Gọi d là ƯC ( 14n + 3 ; 21n + 4 )
Ta có : 14n + 3 chia hết cho d
=> 3 ( 14n + 3 ) chia hết cho d
=> 42n + 9 chia hết cho d ( 1 )
21n + 4 chia hết cho d
=> 2 ( 21n + 4 ) chia hết cho d
=> 42n + 8 chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d
=> 1 chia hết cho d
Vậy ........
TÌM n thuộc N sao cho
a)7n+3 chia hết n
b)12n-1 chia hết 4n+2
c)10n+5 chia hết 5n-1
\(a,\frac{7n+3}{n}\)
\(\Rightarrow3⋮n\)Vì \(7n⋮n\)
\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)
\(b,\frac{12n-1}{4n+2}\)
\(=\frac{12n+6-7}{4n+2}\)
\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)
Để \(12n-1⋮4n+2\)
\(\Rightarrow7⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)