cho tỉ lệ thức:\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)trong dó b khác 0.cmr : c=0
Từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0;a khác \(\pm b\);c\(\ne\)\(\pm d\)) hãy suy ra các tỉ lệ thức sau:
a,\(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b,\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
c,\(\dfrac{a+b}{a}\) = \(\dfrac{c+d}{c}\)
d,\(\dfrac{a-b}{a}\) =\(\dfrac{c-d}{c}\)
e,\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
e: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
hay \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
cho đẳng thức a.d=b.c tỉ lệ thức nào sau đây sai ( a, b , c , d khác 0 ) :
A \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) B \(\dfrac{d}{b}\) = \(\dfrac{c}{a}\) C \(\dfrac{b}{d}\) = \(\dfrac{c}{a}\) D \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
giúp mình đi nha mn =(
C. \(\dfrac{b}{d}=\dfrac{c}{a}\)
Chúc bạn học tốt!!
CMR từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b \(\ne\) 0, c - d \(\ne\) 0) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
Vậy...
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)
Thay (1) vào:
\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)
Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất hoán vị ta được:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) trong đó \(b\ne0\) . Chứng minh rằng \(c=0\)
a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c
suy ra 2c/a+b-c = 2c/a-b-c
Dấu = xảy ra khi c=0
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)
\(\Leftrightarrow4bc=0\)
Do b\(\ne\) 0\(\Rightarrow c=0\)
Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
Từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) (với a,b,c,d khác 0) có thể suy ra những tỉ lệ thức nào?
Ta có: \(\dfrac{a}{b} = \dfrac{c}{d}\) nên a.d = b.c
Ta suy ra được các tỉ lệ thức: \(\dfrac{a}{c} = \dfrac{b}{d};\dfrac{d}{b} = \dfrac{c}{a};\dfrac{d}{c} = \dfrac{b}{a}\)
\(\dfrac{a}{c}=\dfrac{b}{d}\\ \dfrac{a}{d}=\dfrac{c}{b}\)
Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}\) = \(\dfrac{a-b+c}{a-b-c}\) với b≠0
Chứng minh rằng: c=0
Ta có: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow-4bc=0\)
hay c=0
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
a) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{d}\)
a: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)