Violympic toán 7

H24

Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) trong đó  \(b\ne0\) . Chứng minh rằng \(c=0\) 

MH
8 tháng 8 2021 lúc 16:35

a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c

suy ra 2c/a+b-c = 2c/a-b-c

Dấu = xảy ra khi c=0

Bình luận (0)
H24
8 tháng 8 2021 lúc 16:39

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) 

\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\) 

\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)

\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)

\(\Leftrightarrow4bc=0\)

Do b\(\ne\) 0\(\Rightarrow c=0\)

Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)

Bình luận (0)
LN
9 tháng 8 2021 lúc 14:42

undefined

Bình luận (0)