Những câu hỏi liên quan
QB
Xem chi tiết
NT
24 tháng 8 2021 lúc 0:35

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

Bình luận (0)
NL
Xem chi tiết
NH
Xem chi tiết
AH
28 tháng 8 2021 lúc 16:21

Lời giải:

a.

$ab(a-b)+bc(b-c)+ca(c-a)$

$=ab(a-b)-bc[(a-b)+(c-a)]+ca(c-a)$

$=ab(a-b)-bc(a-b)-bc(c-a)+ca(c-a)$

$=(a-b)(ab-bc)-(c-a)(bc-ca)=b(a-b)(a-c)-c(c-a)(b-a)$

$=b(a-b)(a-c)-c(a-c)(a-b)=(a-b)(b-c)(a-c)$

b.

$x^2-3xy-10y^2=(x^2+2xy)-(5xy+10y^2)$

$=x(x+2y)-5y(x+2y)=(x+2y)(x-5y)$

c.

$3x(x-2)-x+2=3x(x-2)-(x-2)=(x-2)(3x-1)$

Bình luận (0)
NM
28 tháng 8 2021 lúc 16:21

\(a,ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ =a^2b-ab^2+b^2c-bc^2+ca\left(c-a\right)\\ =\left(a^2b-bc^2\right)-\left(ab^2-b^2c\right)+ca\left(c-a\right)\\ =b\left(a-c\right)\left(a+c\right)-b^2\left(a-c\right)-ca\left(a-c\right)\\ =\left(a-c\right)\left(ab+bc-b^2-ca\right)\\ =\left(a-c\right)\left(b-c\right)\left(a-b\right)\)

\(b,x^2-3xy-10y^2\\ =x^2+2xy-5xy-10y^2\\ =x\left(x+2y\right)-5y\left(x+2y\right)=\left(x-5y\right)\left(x+2y\right)\)

\(c,3x\left(x-2\right)-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)

 

Bình luận (0)
NT
28 tháng 8 2021 lúc 23:14

b: Ta có: \(x^2-3xy-10y^2\)

\(=x^2-5xy+2xy-10y^2\)

\(=x\left(x-5y\right)+2y\left(x-5y\right)\)

\(=\left(x-5y\right)\left(x+2y\right)\)

c: Ta có: \(3x\left(x-2\right)-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Bình luận (0)
KR
Xem chi tiết
NQ
Xem chi tiết
DH
2 tháng 4 2019 lúc 20:42

ko bt đâu thông cảm

Bình luận (0)
ZZ
2 tháng 4 2019 lúc 20:44

phân tích bằng đặt ẩn phụ=))

Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)

\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)

Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:

\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)

Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)

Bình luận (0)
DH
2 tháng 4 2019 lúc 21:07

wtf ko bt ma cung dí

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 10 2021 lúc 14:29

Bài 1: 

a: \(4a^2-6b=2\left(2a^2-3b\right)\)

b: \(m^3n-2m^2n^2-mn\)

\(=mn\left(m^2-2mn-1\right)\)

Bình luận (0)
LL
2 tháng 10 2021 lúc 14:30

Bài 1:

a) \(4a^2-6b=2\left(a^2-3b\right)\)

b) \(=mn\left(m^2-2mn-1\right)\)

Bài 2:

a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)

b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 8 2021 lúc 18:39

Biểu thức này không phân tích thành nhân tử được

Muốn phân tích được thành nhân tử thì cần có thêm số hạng \(c\left(a^2+b^2+ab\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 4 2018 lúc 15:16

Bình luận (0)
DT
Xem chi tiết
NT
23 tháng 10 2021 lúc 23:25

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)