tìm x
a) x^2 - 4 = 0
b) x(x+5) = 9x
c) 3x^3 - 48x = 0
d) x^4 +x^2 - 20 = 0
Tìm x:
a) (x-20) mũ 2 -(x+1)(x+3)=-7
b) (3x+5)(4-3x)=0
c) x mũ 3 -9x=0
d)2/3x (x mũ 2 -4)=0
e) (2x+1)-x(2x+1)=0
f)(2x-1) mũ 2 -(2x+5) (2x-5) =18
g)x mũ 2 -25 =6x-9
bài 19: tìm x
a) 5 . ( x - 7 ) = 0
b) 25 ( x - 4 ) = 0
c) ( 34 - 2x ) . ( 2x - 6 ) = 0
d) ( 2019 - x ) . ( 3x - 12 ) 0
e) 57 . ( 9x - 27 ) = 0
f) 25 + ( 15 - x ) = 30
g) 43 - ( 24 - x ) = 20
h) 2 . ( x - 5 ) - 17 = 25
i) 3 . ( x + 7 ) - 15 = 27
j) 15 + 4 . ( x - 2 ) = 95
k) 20 - ( x + 14 ) = 5
l) 14 + 3 . ( 5 - x ) = 27
a) \(5\left(x-7\right)=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
b) \(25\left(x-4\right)=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) 5.(x-7)=0⇔x-7=0⇔x=7
b) 25(x-4)=0⇔x-4=0⇔x=4
c) (34-2x).(2x-6)=0
⇔ 34-2x=0 hoặc 2x-6=0
⇔2x=34 hoặc 2x=6
⇔ x=17 hoặc x=3
d) (2019-x).(3x-12)=0
⇔ 2019-x=0 hoặc 3x-12=0
⇔ x=2019 hoặc x=4
e) 57.(9x-27)=0
⇔ 9x-27=0
⇔ x=3
f) 25+(15-x)=30
⇔ 15-x=5
⇔ x=10
g) 43-(24-x)=20
⇔ 24-x=23
⇔ x=1
h) 2.(x-5)-17=25
⇔ 2(x-5)=42
⇔x-5=21
⇔ x=26
i) 3(x+7)-15=27
⇔ 3(x+7)=42
⇔ x+7=14
⇔ x=7
j) 15+4(x-2)=95
⇔ 4(x-2)=80
⇔ x-2=20
⇔ x=22
k) 20-(x+14)=5
⇔ x+14=15
⇔ x=1
l) 14+3(5-x)=27
⇔ 3(5-x)=13
⇔ 5-x=13/3
⇔ x=5-13/3
⇔ x=2/3
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Tìm x
a.(x+2).(x+3)-(x-2).(x+5) = 0
b. (2x+3).(x-4)+(x-5)(x+2) = (3x-5)(x-4)
c. (3x+2)(2x+9)-(x+2)(6x+1) = x+1-(x-6)
d. 3( 2x-1).(3x-1)-(2x-3).(9x-1)=0
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
Tìm x:
a) (x-20) mũ 2 -(x+1)(x+3)=-7
b) (3x+5)(4-3x)=0
c) x mũ 3 -9x=0
d)2/3x (x mũ 2 -4)=0
e) (2x+1)-x(2x+1)=0
f)(2x-1) mũ 2 -(2x+5) (2x-5) =18
g)x mũ 2 -25 =6x-9
b, x = -5/3 hoặc x = 4/3.
c, x = 0 hoặc x = 3, -3.
d, x = 0 hoặc x = 2, -2.
e, x = 1 hoặc x = \(\dfrac{-1}{2}\).
a: \(\Leftrightarrow x^2-40x+400-x^2-4x-3=-7\)
=>-44x+397=-7
=>-44x=-404
hay x=101
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\4-3x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};\dfrac{4}{3}\right\}\)
c: \(\Leftrightarrow x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
d: \(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{0;2;-2\right\}\)
e: =>(2x+1)(1-x)=0
=>x=-1/2 hoặc x=1
Tìm x.
a) 3x (2x-5 )-4 (5-2x ) =0
b) x2 + 3x=0
c )3x(x+2 )-x-2 =0
d) 4x2 -9x+5=0
e) x(x-2)+x-2=0
2x2 -5x+3=0
e, x(x - 2) + x - 2 = 0
=> (x-1)(x-2) = 0
=> x - 1 = 0 hoặc x - 2 = 0
=> x = 1 hoặc x = 2
vậy_
b, x2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
2x2 - 5x + 3 = 0
=> 2.x.x - 5.x = -3
=> x(2x - 5) = -3
đoạn này lập bảng
d) 4x2 - 9x + 5 = 0
=> 4.x.x - 9.x = -5
=> x(4x - 9) = -5
đến đây cx lập bảng
bạn suy ngĩ kĩ trước khi đăng câu hỏi lên
\(a,3x\left(2x-5\right)-4\left(5-2x\right)=0\)
\(\Rightarrow3x\left(2x-5\right)+4\left(2x-5\right)=0\)
\(\Rightarrow\left(3x+4\right)\left(2x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+4=0\\2x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{3}\\x=\frac{5}{2}\end{cases}}}\)
Vậy...
\(b,x^2+3x=0\)
\(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy...
\(c,3x\left(x+2\right)-x-2=0\)
\(\Rightarrow3x\left(x+2\right)-\left(x+2\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}}\)
Vậy...
\(d,4x^2-9x+5=0\)
\(\Rightarrow4x^2-4x-5x+5=0\)
\(\Rightarrow4x\left(x-1\right)-5\left(x-1\right)=0\)
\(\Rightarrow\left(4x-5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-5=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=1\end{cases}}}\)
Vậy...
\(e,x\left(x-2\right)+x-2=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy...
\(g,2x^2-5x+3=0\)
\(\Rightarrow2x^2-2x-3x+3=0\)
\(\Rightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
Vậy...
bài 1:chứng minh rằng với mọi x ta có:
a)-x^2+4x-5<0
b)x^4+3x^2+3>0
c)(x^2+2x+3)(x^2+2x+4)+3>0
bài 2:tìm x:
a)9x^2-6x-3=0
b)x^3+9x^2+27x+19=0
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
Với x+1=0 =>x=-1Với x2+8x+19 =>vô nghiệmc)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là
=>-25x=11
bài 19: tìm x
c) ( 34 - 2x ) . ( 2x - 6 ) = 0
d) ( 2019 - x ) . ( 3x - 12 ) 0
e) 57 . ( 9x - 27 ) = 0
f) 25 + ( 15 - x ) = 30
g) 43 - ( 24 - x ) = 20
h) 2 . ( x - 5 ) - 17 = 25
i) 3 . ( x + 7 ) - 15 = 27
j) 15 + 4 . ( x - 2 ) = 95
k) 20 - ( x + 14 ) = 5
l) 14 + 3 . ( 5 - x ) = 27
nhanh nha, mik tick cho, ccau trình bày dễ hiểu, ko cần ''hoặc''
`@` `\text {Ans}`
`\downarrow`
`c)`
`( 34 - 2x ) . ( 2x - 6 ) = 0`
`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
Vậy, `x \in {17; 3}`
`d)`
`( 2019 - x ) . ( 3x - 12 ) =0` `?`
`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
Vậy, `x \in {2019; 4}`
`e) `
`57 . ( 9x - 27 ) = 0`
`=>`\(9x-27=0\div57\)
`=> 9x - 27 = 0`
`=> 9x = 27`
`=> x = 27 \div 9`
`=> x = 3`
Vậy, `x = 3`
`f)`
`25 + ( 15 - x ) = 30`
`=> 15 - x = 30 - 25`
`=> 15 - x = 5`
`=> x = 15 -5 `
`=> x = 10`
Vậy, `x = 10`
`g) `
`43 - ( 24 - x ) = 20`
`=> 24 - x = 43 - 20`
`=> 24 - x = 23`
`=> x = 24 - 23`
`=> x = 1`
Vậy, `x = 1`
`h) `
`2 . ( x - 5 ) - 17 = 25`
`=> 2 ( x - 5) = 25+17`
`=> 2 ( x - 5) = 42`
`=> x - 5 = 42 \div 2`
`=> x - 5 = 21`
`=> x = 21 + 5`
`=> x = 26`
Vậy, `x = 26`
`i)`
`3 . ( x + 7 ) - 15 = 27`
`=> 3(x + 7) = 27 + 15`
`=> 3(x + 7) = 42`
`=> x +7 = 42 \div 3`
`=> x + 7 = 14`
`=> x = 14 - 7`
`=> x = 7`
Vậy, `x = 7`
`j)`
`15 + 4 . ( x - 2 ) = 95`
`=> 4(x - 2) = 95 - 15`
`=> 4(x - 2) = 80`
`=> x - 2 = 80 \div 4`
`=> x - 2 = 20`
`=> x = 20 + 2`
`=> x = 22`
Vậy, `x = 22`
`k)`
`20 - ( x + 14 ) = 5`
`=> x + 14 = 20 - 5`
`=> x + 14 = 15`
`=> x = 15 - 14`
`=> x = 1`
Vậy, `x = 1`
`l) `
`14 + 3 . ( 5 - x ) = 27`
`=> 3(5 - x) = 27 - 14`
`=> 3(5 - x) = 13`
`=> 5 - x = 13 \div 3`
`=> 5 - x = 13/3`
`=> x = 5- 13/3`
`=> x = 2/3`
Vậy, `x = 2/3.`
`@` `\text {Kaizuu lv uuu}`
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)