Những câu hỏi liên quan
HL
Xem chi tiết
MV
2 tháng 5 2017 lúc 18:34

2)

\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)

Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)\(C\)

\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)

\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)

Vậy \(D< 100\)

Bình luận (0)
DX
Xem chi tiết
NT
2 tháng 7 2021 lúc 23:55

Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

=100

Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)

\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{8}{\dfrac{1}{5}}=40\)

\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)

Bình luận (0)
AT
Xem chi tiết
NT
9 tháng 1 2024 lúc 20:41

a: \(\dfrac{3}{4}+\dfrac{1}{4}:x=-2\dfrac{1}{2}\)

=>\(\dfrac{1}{4}:x=-\dfrac{5}{2}-\dfrac{3}{4}=-\dfrac{10}{4}-\dfrac{3}{4}=-\dfrac{13}{4}\)

=>\(x=\dfrac{-1}{4}:\dfrac{13}{4}=\dfrac{-1}{4}\cdot\dfrac{4}{13}=\dfrac{-1}{13}\)

b: \(\left(\dfrac{2}{3}\right)^{100}:x=\left(-\dfrac{2}{3}\right)^{98}\)

=>\(\left(\dfrac{2}{3}\right)^{100}:x=\left(\dfrac{2}{3}\right)^{98}\)

=>\(x=\left(\dfrac{2}{3}\right)^{100}:\left(\dfrac{2}{3}\right)^{98}=\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)

c: \(\dfrac{3}{2}:\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{4}\)

=>\(\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{2}:\dfrac{3}{4}=\dfrac{3}{2}\cdot\dfrac{4}{3}=2\)

=>\(\left[{}\begin{matrix}4x-\dfrac{1}{5}=2\\4x-\dfrac{1}{5}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{5}\\4x=-\dfrac{9}{5}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{11}{20}\\x=-\dfrac{9}{20}\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
H24
5 tháng 12 2024 lúc 21:16

Cho mik hỏi cách làm bài này

Tính nhanh 1 1/2x1 1/3 × 11/4×...x 1 1/99×1 1/100

Bình luận (0)
AC
Xem chi tiết
NT
1 tháng 8 2023 lúc 20:22

\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)

\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)

\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)

Bình luận (1)
ZJ
1 tháng 8 2023 lúc 20:29

a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\) 

Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\) 

                                                                             \(=\dfrac{102.101}{2}\Leftrightarrow51.101\) 

  \(M=101-100+99-98+...+3-2+1\) 

Ta có: \(101:2=50\) (dư \(1\)

\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\) 

 Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"

 \(\Rightarrow M=1+1+...+1+1=51.1=51\) 

      \(M\) có  \(51\) số \(1\)  

 \(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)

 Vậy \(A=101\)

b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\) 

Ta có: \(T=3737.43-4343.37\) 

          \(T=37.101.43-43.101.37\) 

          \(T=0\) 

\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\) 

 Vậy \(B=0\)

Bình luận (3)
NA
Xem chi tiết
PX
7 tháng 5 2017 lúc 14:22

hihi

Bình luận (1)
LD
Xem chi tiết
PJ
Xem chi tiết
GT
4 tháng 10 2017 lúc 22:17

33.(1+3+...+397)

__________________

3.(1+3+...+397)

=33

____

3

=32

=9

Bình luận (0)
TB
Xem chi tiết
TB
25 tháng 6 2021 lúc 20:57

help me

Bình luận (0)
NT
25 tháng 6 2021 lúc 22:27

a) Ta có: \(A=1^3+2^3+3^3+...+100^3\)

\(=\left(1-1\right)\cdot1\cdot\left(1+1\right)+1+\left(2-1\right)\cdot2\cdot\left(2+1\right)+2+...+\left(100-1\right)\cdot100\cdot\left(100+1\right)+100\)

\(=1+2+1\cdot2\cdot3+...+99\cdot100\cdot101\)

\(=5050+25497450\)

\(=25502500\)

Bình luận (0)