Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 1 2018 lúc 4:13

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy tứ giác EFGH là hình chữ nhật.

Bình luận (0)
LA
Xem chi tiết
PH
Xem chi tiết
DD
Xem chi tiết
NT
21 tháng 7 2018 lúc 8:04

Bạn tham khảo ở đây nhé!! Hình bình hành

Bình luận (0)
NP
Xem chi tiết
PD
17 tháng 8 2018 lúc 19:12

vì không biết làm

Bình luận (0)
H24
17 tháng 8 2018 lúc 19:48

Bạn làm xong rồi gửi cho mk, mk giải cho

Bình luận (0)
PK
17 tháng 8 2018 lúc 20:18

Ta có: ABCD là hình bình hành ( gt )

\(\Rightarrow\widehat{DAB}=\widehat{DCB};\widehat{ADC}=\widehat{ABC}\)

Dùng định lý tổng 4 góc trong tứ giác ABCD ta có:

\(\widehat{DAB}+\widehat{DCB}+\widehat{ADC}+\widehat{ABC}=360^0\)

Từ 2 điều trên suy ra \(\widehat{DAB}+\widehat{ABC}=\frac{360^0}{2}=160^0\)

Mà AG là tia phân giác của \(\widehat{DAB}\left(gt\right)\)

Áp dụng tính chất tia phân giác nên: \(\widehat{BAG}=\frac{1}{2}\widehat{DAB}\)

Tượng tự ta có: \(\widehat{ABG}=\frac{1}{2}\widehat{ABC}\) ( Vì BG là tia phân giác góc ABC )

Tiếp tục xét tam giác ABG rồi dùng định lý tổng 3 góc trong 1 tam giác = 180 độ là ra

Bài này có trong sách giáo khoa nè

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 7 2023 lúc 9:54

EHENGE

Bình luận (0)
BQ
Xem chi tiết
SM
Xem chi tiết
NA
Xem chi tiết
LC
24 tháng 2 2020 lúc 21:45

A B C D E F G H

a) Xét tam giác  ADB có: 

\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)

\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )

Xét tam giác CDB có:

\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)

\(\Rightarrow GF//BD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow HE//GF\)

CMTT\(HG//EF\)( cùng // AC)

Xét tứ giác EFGH có:

\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)

b) 

Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)

Xét tam giác ADB có:

\(HE//BD\left(gt\right)\)

\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))

\(\Rightarrow HE=k.BD\)

Xét tam giác ABC có:

\(EF//AC\left(cmt\right)\)

\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)

\(\Rightarrow EF=\left(1-k\right)AC\)

\(P_{EFGH}=2\left(HE+EF\right)\)

\(=2\left[k.BD+\left(1-k\right)AC\right]\)

\(=2AC\)không đổi  ( AC=BD do ABCD là hình chữ nhật )

Vậy chu vi của hbh EFGH có giá trị không đổi 

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 2 2020 lúc 15:09

bạn bảo châu ơi

Bình luận (0)
 Khách vãng lai đã xóa