\(\widehat{HAD}+\widehat{HDA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ADC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{AHD}=90^0\)
=>AG\(\perp\)DE
\(\widehat{GAB}+\widehat{GBA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ABC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{AGB}=90^0\)
\(\widehat{FBC}+\widehat{FCB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{BCD}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{BFC}=90^0\)
Xét tứ giác HEFG có \(\widehat{EHG}=\widehat{HGF}=\widehat{GFE}=90^0\)
nên HEFG là hình chữ nhật