Những câu hỏi liên quan
PM
Xem chi tiết
TT
Xem chi tiết
NH
29 tháng 6 2016 lúc 11:08

Hỏi đáp Toán

Bình luận (0)
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 15:36

a/

DKXD: ...

\(\Leftrightarrow-cos2x.tan^22x+3.cos2x=0\)

\(\Leftrightarrow cos2x\left(3-tan^22x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\tan^22x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\2x=\frac{\pi}{3}+k\pi\\2x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{6}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:42

b/

DKXD: ...

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{sin2x}{cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sinx.cos2x+sin2x.cosx}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin\left(2x+x\right)}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-\frac{2}{sin2x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\left(1\right)\\2cosx.cos2x=sin2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3sinx-4sin^3x=0\) (tìm nghiệm thẳng bằng \(3x=k\pi\) rồi dựa vào đường tròn lượng giác loại nghiệm cũng được)

\(\Leftrightarrow sinx\left(3-4sin^2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\sinx=\pm\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2cosx.cos2x=2sinx.cosx\)

\(\Leftrightarrow2cosx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(l\right)\\cos2x=sinx=cos\left(\frac{\pi}{2}-x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\left(l\right)\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:44

c/

\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)

\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)

Bình luận (0)
LC
Xem chi tiết
NH
Xem chi tiết
NL
19 tháng 9 2020 lúc 17:52

Trong khoảng đã cho \(tanx\) luôn dương nên ko cần tìm ĐKXĐ

\(\Leftrightarrow1+sinx+cosx+sin2x+cos2x=0\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx+2cos^2x=0\)

\(\Leftrightarrow sinx+cosx+2cosx\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

Do \(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(sinx+cosx\right)\left(2cosx+1\right)>0\)

Pt vô nghiệm trên \(\left(0;\frac{\pi}{2}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 21:48

a/

\(\Leftrightarrow2cos^2x-1+cosx+1=0\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

b/ ĐKXĐ: ...

\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)

\(\Leftrightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow tan^2x-2tanx+1=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 21:50

c/

\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)

\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

d/ ĐKXĐ: ...

\(\Leftrightarrow cot^22x+3.cot2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 21:07

a/

\(\Leftrightarrow2cos2x.cosx+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos^22x=0\)

\(\Leftrightarrow cos2x\left(2cosx+cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\2cosx+cos2x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\left(2\right)\Leftrightarrow2cosx+2cos^2x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}-1}{2}\\cosx=\frac{-\sqrt{3}-1}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 21:12

b/

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cosx+1-cos^2x+2cos^2x-1=\frac{1}{2}\)

\(\Leftrightarrow cos^2x+\frac{1}{2}cosx=0\)

\(\Leftrightarrow cosx\left(cosx+\frac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

c/ ĐKXĐ: ...

\(\Leftrightarrow\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{2}{sin2x}\right)^2+\frac{3}{sin2x}-7=0\)

Đặt \(\frac{1}{sin2x}=a\Rightarrow4a^2+3a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=arcsin\left(-\frac{4}{7}\right)+k2\pi\\2x=\pi-arcsin\left(-\frac{4}{7}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
TY
Xem chi tiết