Tính : \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right):\left(x^2-1\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm dư trong phép chia: \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right):\left(x^2-1\right)\)
Vì đa thức chia có dạng bậc 2 ⇒đa thức dư sẽ là ax+bax+b
Gọi Q(x) là thương trong phép chia (x^105+x^90+x^75+...+x^15+1):(x^2−1) ta có:
x^105+x^90+x^75+...+x^15+1=(x^2−1)Q(x)+ax+bx
Tại x=1 có: 8=a+b (1)
Tại x=−1 có: −a+b=0(2)
Trừ (1) cho (2) được:
a+b+a−b=8
⇒2a=8
⇒a=4
Khi đó: b = 4
Vậy dư của phép chia là 4x+4.
mk viet nham de mk lam lai nha:
Vì đa thức chia có dạng bậc 2 ⇒đa thứ dư sẽ là: ax+b
Gọi Q(x) là thương trong phép chia:(x^105+x^90+x^15+1)/(x^2-1) ta có:
Tại x=1x=1 có: 8=a+b(1)
Tại x=−1x=−1 có: −a+b=0(2)
Trừ (1) cho (2) được:
a+b+a−b=8
⇒2a=8
⇒a=4
Khi đó: b = 4
Vậy dư của phép chia là 4x+4 .
@_@
Tìm dư trong phép chia \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right)⋮\left(x^2-1\right)\)
c)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
d)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+.....+\left(x+99\right)+\left(x+100\right)+=20150\)
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
c) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+\left(x+5\right)=90\)
\(\Leftrightarrow x+1+x+2+x+3+x+4+x+5=90\)
\(\Leftrightarrow5x+\left(1+2+3+4+5\right)=90\)
\(\Leftrightarrow5x+15=90\)
\(\Leftrightarrow5x=75\)
\(\Leftrightarrow x=15\)
d) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+......+\left(x+99\right)+\left(x+100\right)=20150\)
\(\Leftrightarrow x+1+x+2+x+3+......+x+99+x+100=20150\)
\(\Leftrightarrow100x+\left(1+2+3+.....+99+100\right)=20150\)
\(\Leftrightarrow100x+5050=20150\)
\(\Leftrightarrow100x=15100\)
\(\Leftrightarrow x=151\)
e)\(\left(x^4+x^2+1\right)^2-38\left(x^4+x^2+1\right)+105=0\)
f)\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
g)\(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
e) Đặt x4+x2+1=a
=> a2-38a+105=0
=> a2-38a+361 -256=0
=> (a-19)2-162=0
=> (a-19-16)(a-19+16)=0
=> (a-35)(a-3)=0
=>\(\orbr{\begin{cases}a=35\\a=3\end{cases}}\)
Bạn cứ thay a vào và làm tiếp nha!
\(\left(\frac{x}{-5}+1\frac{1}{2}\right):\frac{28}{75}-1,4\cdot\frac{15}{49}=\left|-\frac{2}{3}\right|.\left(-\frac{3}{2}\right)^3\)
Tìm x
\(\left(\frac{x}{-5}+1\frac{1}{2}\right):\frac{28}{75}-1,4.\frac{15}{49}=\left|-\frac{2}{3}\right|.\left(-\frac{3}{2}\right)^3\)
\(\left(\frac{x}{-5}+\frac{3}{2}\right).\frac{75}{28}-\frac{14}{10}.\frac{15}{49}=\frac{2}{3}.\frac{-27}{8}\)
\(\left(\frac{-x}{5}+\frac{3}{2}\right).\frac{75}{28}-\frac{3}{7}=\frac{-9}{4}\)
\(\left(\frac{-x}{5}+\frac{3}{2}\right).\frac{75}{28}=\frac{-9}{4}+\frac{3}{7}\)
\(\left(\frac{-x}{5}+\frac{3}{2}\right).\frac{75}{28}=\frac{-63}{28}+\frac{12}{28}\)
\(\left(\frac{-x}{5}+\frac{3}{2}\right).\frac{75}{28}=\frac{-51}{28}\)
\(\frac{-x}{5}+\frac{3}{2}=\frac{-51}{28}:\frac{75}{28}\)
\(\frac{-x}{5}+\frac{3}{2}=\frac{-51}{28}.\frac{28}{75}\)
\(\frac{-x}{5}+\frac{3}{2}=\frac{-17}{25}\)
\(\frac{-x}{5}=\frac{-17}{25}-\frac{3}{2}\)
\(\frac{-x}{5}=\frac{-34}{50}-\frac{75}{50}\)
\(\frac{-x}{5}=\frac{-109}{50}\)
\(\frac{-10x}{50}=\frac{-109}{50}\)
Hình như đề sai thì phải
ko biết nữa
mik chỉ biết là cô cho vậy thôi
Tìm \(x\in\mathbb{Z}\), biết :
a) \(x=\left(-1\right)+\left(-99\right)\)
b) \(x=\left(-105\right)+\left(-15\right)\)
a, \(x=\left(-1\right)+\left(-99\right)\)
\(x=-100\)
Vậy \(x=-100\)
b, \(x=\left(-105\right)+\left(-15\right)\)
\(x=-120\)
Vậy \(x=-120\)
Tìm nghiệm nguyên \(\left(2x+5y+1\right)\left(2^{\left|x\right|}+x^2+x+y\right)=105\)
Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.
Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.
\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)
Thay x=0 vào phương trình đã cho, ta được:
\(\left(5y+1\right)\left(y+1\right)=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)
Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)
Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học
d.violet.vn//uploads/resources/present/3/652/138/preview.swf
1.Tìm x :
a,\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
b,\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
c,\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}\)\(+\frac{1}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
d,\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)\(+\frac{15}{\left(x-13\right)\left(x-28\right)}\)\(-\frac{1}{x-38}=\frac{-1}{20}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
\(\dfrac{1-cos^2\left(90^0+x\right)}{1-\sin^2\left(90^0-x\right)}-\cot\left(90^0-x\right).\tan\left(x+90^0\right)\)
Rút gọn. x là 1 góc nhé. giúp mình đi mn
Ta có các công thức cơ bản sau: \(cos\left(90^0+x\right)=-sinx;sin\left(90^0-x\right)=cosx\)
\(cot\left(90^0-x\right)=tanx;tan\left(90^0+x\right)=-cotx\)
Thay vào bài toán:
\(\dfrac{1-\left(-sinx\right)^2}{1-cos^2x}-tanx.\left(-cotx\right)=\dfrac{1-sin^2x}{1-cos^2x}+tanx.cotx\)
\(=\dfrac{cos^2x}{sin^2x}+1=\dfrac{cos^2x+sin^2x}{sin^2x}=\dfrac{1}{sin^2x}\)