BT2: Tìm x, biết:
4) \(\text{|}\text{|}2x-1\text{|}-3\text{|}=1\)
BT2: Tìm x, biết
3) \(\dfrac{1}{2}.\left(x-\dfrac{1}{3}\right)=\dfrac{1}{3}.\left(x-\dfrac{1}{4}\right)\)
4) \(\text{ | }x-\dfrac{1}{3}\text{\text{ |}}-\dfrac{1}{3}=\dfrac{1}{3}\)
Tìm x :
\(\text{|x-3|+|2x+1|=4 }\)
\(\text{|2x+3|+|3-4x|=x }\)
\(\text{|x+1|+|x+3|+|2x+7|=x}\)
a: TH1: x<-1/2
PT sẽ là -2x-1+3-x=4
=>-3x+2=4
=>-3x=2
=>x=-2/3(nhận)
TH2: -1/2<=x<3
Pt sẽ là 2x+1+3-x=4
=>x+4=4
=>x=0(nhận)
TH3: x>=3
=>x-3+2x+1=4
=>3x-2=4
=>x=2(loại)
b: TH1: x<-3/2
Pt sẽ là -2x-3+3-4x=x
=>-6x=x
=>x=0(loại)
TH2: -3/2<=x<3/4
PT sẽ là 2x+3+3-4x=x
=>-2x+6-x=0
=>-3x=-6
=>x=2(loại)
TH3: x>=3/4
PT sẽ là 2x+3+4x-3=x
=>6x=x
=>x=0(loại)
\(\text{Tìm x, biết:}\)
\(a\)) \(20\text{%}x-x+\dfrac{1}{5}=\dfrac{3}{4}\)
\(b\)) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(c\)) \(\left(x-\dfrac{3}{4}\right)\left(4+3x\right)=0\)
\(d\)) \(x-\dfrac{1}{3}x+\dfrac{1}{5}x=\dfrac{-26}{5}\)
\(e\)) \(50\text{%}x+\dfrac{2}{3}x=x-5\)
\(g\)) \(\dfrac{2}{3}\left(x+\dfrac{9}{5}\right)-\dfrac{3}{10}.\left(5x-\dfrac{1}{3}\right)=\dfrac{7}{15}\)
câu c) mang tính mua vui hay gì hả bn
mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)
A=1- (\(\text{ }\frac{\text{2x^2 - 1+x}}{\text{1-x^2}}\text{+}\text{ }\frac{\text{2x^3 - x +x^2}}{\text{1+x^2}}\)) * \(\frac{\text{(((1-x)(x^2-x)}}{\text{2x - 1}}\)
Rút gọn A và Cm A < 4/3
Cho x + 3y - 2z = 36 . Tìm x,y,z biết :
a)\(\dfrac{\text{x-1}}{\text{3}}=\dfrac{\text{y+2}}{\text{4}}=\dfrac{\text{z-2}}{\text{3}}\)
b)\(\dfrac{\text{x}}{\text{4}}=\dfrac{\text{y}}{3};\dfrac{\text{y}}{\text{2}}=\dfrac{\text{z}}{\text{5}}\)
c) 9x = 5y ; 2x = z
d) 2x = 3y = 4z
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
Tìm x biết :
\(a,\text{ }2x+3\text{ }⋮\text{ }n-2\)
\(b,\text{ }3x+1\text{ }\text{ }⋮\text{ }11-2n\)
Tìm giá trị nhỏ nhất
a)\(\dfrac{\text{3x^2-2x+3}}{\text{x^2+1}}\)
b)\(\dfrac{\text{3x^2-4x+4}}{\text{x^2+2}}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)
b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)
c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)
d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{
3x + 21
}}{\text{
x^2 - 9
}}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)
Tìm x,
a, \(\dfrac{\text{√(2x-3)}}{\text{√(x-1)}}=2\)
b, \(\text{ }\sqrt{\dfrac{2x-3}{x-1}}=2\)
a,\(x\ge\dfrac{3}{2}\)
\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)\(=>2\sqrt{x-1}=\sqrt{2x-3}\)
\(< =>4\left(x-1\right)=2x-3< =>4x-4=2x-3< =>x=0,5\left(ktm\right)\)
\(=>x\in\phi\)
b, \(đk:\left[{}\begin{matrix}x< 1\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
\(=>\sqrt{\dfrac{2x-3}{x-1}}=4< =>\dfrac{2x-3}{x-1}=>4\left(x-1\right)=2x-3\)
\(< =>4x-4=2x-3< =>2x=1=>x=\dfrac{1}{2}\left(tm\right)\)
vậy,,,..