Những câu hỏi liên quan
NS
Xem chi tiết
NL
31 tháng 12 2021 lúc 22:08

Đề bài tào lao thật sự

Vừa độ vừa radian trong 1 phương trình là không chính xác. Đã độ thì độ hết, đã radian thì radian hết

Bình luận (0)
TH
Xem chi tiết
NL
8 tháng 8 2020 lúc 7:48

1. ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)

\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)

\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)

2.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)

\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)

\(\Leftrightarrow2x+3=x+1+k\pi\)

\(\Rightarrow x=-2+k\pi\)

Bình luận (0)
NL
8 tháng 8 2020 lúc 7:52

3.

ĐKXĐ: ...

\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)

\(\Leftrightarrow tan^22x+tan^22x=8\)

\(\Leftrightarrow tan^22x=4\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)

Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)

Bình luận (0)
NS
Xem chi tiết
NL
3 tháng 10 2021 lúc 11:27

Đề bài thiếu 1 vế của pt

Bình luận (0)
NV
Xem chi tiết
NL
22 tháng 3 2021 lúc 22:23

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 11 2023 lúc 19:20

a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)

b: cos2x=cosx

=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)

c:

ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)

=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)

 \(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)

=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)

=>\(x=\dfrac{2}{3}\Omega+k\Omega\)

d:

ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)

=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)

=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)

 \(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)

=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)

=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)

=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)

Bình luận (0)
NL
Xem chi tiết
AH
20 tháng 12 2017 lúc 1:19

1)

Ta có:

\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)

\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)

\(=3x+\int d(\cot x)=3x+\cot x+c\)

\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)

3)

Xét \(\int (2\tan x-3\cot x)^2dx\)

\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)

\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)

\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)

\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)

\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)

\(=4\tan x-9\cot x-25x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)

 

 

Bình luận (0)
AH
20 tháng 12 2017 lúc 1:24

2)

Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)

\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)

\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

Bình luận (0)
JE
Xem chi tiết
NL
16 tháng 9 2020 lúc 15:06

a.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)

\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)

\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

Bình luận (0)
NL
16 tháng 9 2020 lúc 15:08

c.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)

\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)

\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)

d.

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
AH
28 tháng 6 2021 lúc 18:16

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

Bình luận (0)
AH
28 tháng 6 2021 lúc 18:23

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

Bình luận (0)
H24
Xem chi tiết
H24
23 tháng 8 2023 lúc 19:58

Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:

a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.

b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.

c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.

d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

Bình luận (0)
NT
24 tháng 8 2023 lúc 9:58

a: tan x=-1

=>tan x=tan(-pi/4)

=>x=-pi/4+kpi

b: tan(x+20 độ)=tan 60 độ

=>x+20 độ=60 độ+k*180 độ

=>x=40 độ+k*180 độ

c: tan 3x=tan(x-pi/6)

=>3x=x-pi/6+kpi

=>2x=-pi/6+kpi

=>x=-pi/12+kpi/2

d: tan(5x+pi/4)=0

=>5x+pi/4=kpi

=>5x=-pi/4+kpi

=>x=-pi/20+kpi/5

e: cot(2x-pi/4)=0

=>2x-pi/4=pi/2+kpi

=>2x=3/4pi+kpi

=>x=3/8pi+kpi/2

Bình luận (0)