Hình thang ABCD ( AB//CD) có ^B-^C=30*,^A=3^D
.Tính các góc của hình thang
Bài 4: Cho hình thang ABCD (AB // CD) có A-D=40 độ,B=3c, Tính các góc của hình thang.
Bài 5: Hình thang ABCD (AB // CD) có B-C=60 độ ,D=4 phần 5 A,Tính các góc của hình thang ABCD.
Bài 4:
Ta có: ABCD là hình thang
nên \(\widehat{A}+\widehat{D}=180^0\)
mà \(\widehat{A}-\widehat{D}=40^0\)
nên \(2\cdot\widehat{A}=220^0\)
\(\Leftrightarrow\widehat{A}=110^0\)
\(\Leftrightarrow\widehat{D}=70^0\)
Ta có: ABCD là hình thang
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=45^0\)
\(\Leftrightarrow\widehat{B}=135^0\)
Cho Hình thang ABCD, có AB//CD. Biết Góc A - góc B= 30 độ. Góc B = 3 lần góc C. Tính các ggóc của hình thang ABCD.
\(B=180\frac{3}{4}=135^o\)
\(c=180-135=45^o\)
\(A=135+30=165^o\)
\(D=360-\left(135+45+165\right)=15^o\)
BÀI 2; Cho hình thang ABCD có đáy là AB và CD.
A, Biết góc B - góc C = 30 độ và góc A = 3 góc D. tính các góc của hình thang
B, Biết góc B - góc C = 40 độ và góc C - góc D= 20 ĐỘ. tính các góc của hình thang
BÀI 2; Cho hình thang ABCD có đáy là AB và CD.
A, Biết góc B - góc C = 30 độ và góc A = 3 góc D. tính các góc của hình thang
Giải: Vì AB // CD
=> A + D =180o
mà A = 3D => 3D + D = 180o
=> 4D = 180o
=> D = 45o => A = 135o
Ta có: AB // CD => B + C = 180o
mà B - C = 30o hay B = C + 30o
=> C + 30o + C = 180o
=> 2C = 150o => C = 75o => B = 105o
1, Cho hình thang ABCD ( AB // CD ) có góc B - góc C = 24° , góc A = 1,5 góc D . Tính các góc của hình thang .
2. Cho hình thang vuông ABCD ( góc A = góc D = 90°) đường chéo BD vuông góc với cạnh bên BC và BD = BC :
a, Tính các góc của hình thang .
b, Biết AB = 3 cm , Tính độ dài các cạnh BC,CD .
.cho hình thang ABCD có A^=3D^, B^=C^(AB//CD)
AB=\(\sqrt{2cm}\), AD=3cm,CD=4cm
a)cmr A^+B^=C^+D^
b)tính các góc của hình thang ABCD
c)tính diện tích của hình thang ABCD
a: Xét hình thang ABCD(AB//CD có
\(\widehat{B}=\widehat{C}\)
nên ABCD là hình thang cân
Tính các góc của hình thang ABCD (AB//CD) biết∠A = 3.∠D và ∠B−∠C = 30◦
Có \(\widehat{B}+\widehat{C}=180^0\) (hai góc trong cùng phía do AB//CD)
mà \(\widehat{B}-\widehat{C}=30^0\)
\(\Rightarrow\widehat{B}=105^0;\widehat{C}=75^0\)
Có \(\widehat{A}+\widehat{D}=180^0\) (hai góc trong cùng phía do AB//CD)
mà \(\widehat{A}=3\widehat{D}\)\(\Rightarrow4\widehat{D}=180^0\Leftrightarrow\widehat{D}=45^0\)
\(\Rightarrow\widehat{A}=135^0\)
Vậy\(\widehat{B}=105^0;\widehat{C}=75^0\);\(\widehat{A}=135^0\);\(\widehat{D}=45^0\)
Ta có: AB//CD(gt)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)
\(\Leftrightarrow4\cdot\widehat{D}=180^0\)
hay \(\widehat{D}=45^0\)
\(\Leftrightarrow\widehat{A}=3\cdot\widehat{D}=3\cdot45^0\)
hay \(\widehat{A}=135^0\)
Ta có: AB//CD(gt)
nên \(\widehat{B}+\widehat{C}=180^0\)(hai góc trong cùng phía)
mà \(\widehat{B}-\widehat{C}=30^0\)
nên \(\widehat{B}=105^0\) và \(\widehat{C}=75^0\)
Có ˆB+ˆC=1800
(hai góc trong cùng phía do AB//CD)
mà ˆB−ˆC=300
⇒ˆB=1050;ˆC=750
Có ˆA+ˆD=1800
(hai góc trong cùng phía do AB//CD)
mà ˆA=3ˆD
⇒4ˆD=1800⇔ˆD=450
⇒ˆA=1350
VậyˆB=1050;ˆC=750
;ˆA=1350;ˆD=450
Cho hình thang ABCD ( AB // CD ) có góc = 3 góc D , góc B = góc C , AD = căn bậc 2cm , AB = 3 cm, CD = 4 cm
a) Chứng minh rằng góc A + góc D = góc C + góc B b) Tính số đo các góc của hình thang
c) Tính đường cao AH của hình thang và diện tích hình thang ABCD
a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Cho hình thang ABCD ( AB//CD) có A=3D, B=C, AB= căn 2 cm, BC=3cm, CD= 4cm
1. CMR: A+D=B+C
2. Tính số đo các góc của hình thang
3. Tính đường cao và S(ABCD)
1: AB//CD
=>góc A+góc D=180 độ và góc B+góc C=180 độ
=>góc A+góc D=góc B+góc C
2: góc A+góc D=180 độ
góc A=3*góc D
=>góc A=3/4*180=135 độ và góc D=180-135=45 độ
góc B=góc C
góc B+góc C=180 độ
=>góc B=góc C=180/2=90 độ