Tìm x để căn thức sau có nghĩa :
\(\sqrt{x^2-2x+5}\)
a.\(\sqrt{\dfrac{3x-2}{5}}\)
b.\(\sqrt{\dfrac{2x-3}{-3}}\)
Tìm x để các căn thức sau có nghĩa
\(a,ĐK:\dfrac{3x-2}{5}\ge0\Leftrightarrow3x-2\ge0\left(5>0\right)\Leftrightarrow x\ge\dfrac{2}{3}\\ b,ĐK:\dfrac{2x-3}{-3}\ge0\Leftrightarrow2x-3\le0\left(-3< 0\right)\Leftrightarrow x\le\dfrac{3}{2}\)
Tìm x để các căn thức sau có nghĩa
\(\sqrt{x^2+2x+3}\)
\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+3}\) xác định với mọi x
Làm như bài trước mik làm, bn chứng minh \(x^2+2x+3\ge0\) là đc
Tìm x để căn thức sau có nghĩa a. sqrt(- 3/(1 - 2x)) b.sqrt(2x+5/24)) c.sqrt(2x-16))+x-3/x-8
a: ĐKXĐ: -3/(1-2x)>=0
=>1-2x>0
=>2x<1
=>x<1/2
b: ĐKXĐ: 2x+5/24>=0
=>2x>=-5/24
=>x>=-5/48
c: ĐKXĐ: 2x-16>=0 và x-8<>0
=>x>8
a) Để căn thức sqrt(-3/(1-2x)) có nghĩa, ta cần điều kiện:
1 - 2x > 0 (mẫu số không được bằng 0)
=> 1 > 2x
=> x < 1/2
b) Để căn thức sqrt((2x+5)/24) có nghĩa, ta cần điều kiện:
2x + 5 ≥ 0 (tử số không được âm)
=> 2x ≥ -5
=> x ≥ -5/2
c) Để căn thức sqrt(2x-16) + (x-3)/(x-8) có nghĩa, ta cần thỏa mãn hai điều kiện:
2x - 16 ≥ 0 (căn thức không được âm)
=> 2x ≥ 16
=> x ≥ 8
x ≠ 8 (mẫu số của phân số không được bằng 0)
Vậy, kết hợp hai điều kiện trên, ta có x > 8 và x ≠ 8. Tức là x > 8.
Tìm x để mỗi căn thức sau có nghĩa
\(\sqrt{2x+7}\)
\(2x+7\ge x\Leftrightarrow x\ge-\dfrac{7}{2}\)
ĐKXĐ: \(x\ge-\dfrac{7}{2}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
Tìm đk của x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x^2-3}{5-3x}}\)
Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{\frac{2x-4}{5-x}}\)
\(\sqrt{\frac{2x-4}{5-x}}\ge0\)
\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)
\(x\ne5\)
\(\frac{2x-4}{5-x}\ge0\)
\(TH1:2x-4\ge0;5-x\ge0\)
\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)
\(TH2:2x-4< 0;5-x< 0\)
\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no
vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)
ĐKXĐ : x \(\ne5\)
Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)
TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)
TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)
Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)
tìm x để căn thúc sau có nghĩa
\(\sqrt{25-x^2}\)
M=\(\sqrt{x+4}+\sqrt{2-x}\) tìm x thuộc z đẻ biểu thức M có nghĩa
\(\sqrt{25-x^2}\) lớn hơn hoặc= 0
=> 25-x2 lớn hơn hoặc= 0
=> -x2 lớn hơn hoặc= -25
x2 bé hơn hoặc =25
x bé hơn hoặc =5
a: ĐKXĐ: \(-5\le x\le5\)
b: ĐKXĐ: \(-4\le x\le2\)
mà x nguyên
nên \(x\in\left\{-4;-3;-2;-1;0;1;2\right\}\)
Tìm điều kiện của x để căn thức sau có nghĩa
a) $\sqrt{2x+10}$ +1/(x^2-4)
b) $\sqrt{\frac{x^2+1}{x-1}}$
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
a,\(\sqrt{5-4x}\)
b,\(\sqrt{\left(x+1\right)^2}\)
c,\(\sqrt{\dfrac{-1}{x-2}}\)
giúp mình tìm điều kiện để tìm các căn thức sau có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
a)
Căn thức có nghĩa thì:
\(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)
b)
Để căn thức có nghĩa thì:
\(\left(x+1\right)^2\ge0\) (luôn đúng)
Vậy căn thức có nghĩa với mọi giá trị x.
c)
Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)