ĐKXĐ: \(\begin{array}{l} {x^2} - 2x + 5 \ge 0\\ \Leftrightarrow {x^2} - 2x + 1 + 4 \ge 0\\ \Leftrightarrow {(x - 1)^2} + 4 \ge 4 > 0\,\,\,\forall x \in R \end{array}\)
ĐKXĐ: \(\begin{array}{l} {x^2} - 2x + 5 \ge 0\\ \Leftrightarrow {x^2} - 2x + 1 + 4 \ge 0\\ \Leftrightarrow {(x - 1)^2} + 4 \ge 4 > 0\,\,\,\forall x \in R \end{array}\)
Tìm điều của x để căn thức sau có nghĩa
\(\sqrt{x^2-9}\)
\(\sqrt{x^2+9}\)
\(\sqrt[3]{3x+9}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
(*) tìm x để căn thức sau có nghĩa:
\(a,\sqrt{2x-1}\\ b,\sqrt{\dfrac{3}{x+1}}\\ c,\sqrt{3x^2}\\ d,\sqrt{\dfrac{3}{x^2}}\\ e,\sqrt{-\dfrac{1}{x^2+2}}\\ f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)
Bài 1: Tìm x để mỗi căn thức sau có nghĩa:
√x+7; √x-5; √3-2/3x; √5-3x
1.
a. Tìm điều kiện đẻ căn thức bậc hai coa nghĩa
\(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
1. Tìm x để các căn thức bậc hai sau có nghĩa:
a) \(\sqrt{\frac{2}{9-x^{ }}}\) b) \(\sqrt{x^2+2x+1}\)
c) \(\sqrt{x^2-4x}\)
2. Tìm x để các biểu thức sau có nghĩa:
a) \(\sqrt{9-x^2}\) b) \(\sqrt{\frac{1}{x^2-4}}\)
c) \(\frac{1}{\sqrt{x}+2}+\frac{\sqrt{x}}{\sqrt{x}-3}\)
3. Rút gọn các biểu thức sau:
a) \(\sqrt{\left(3-\sqrt{10}\right)^2}\) b) \(\sqrt{9-4\sqrt{5}}\)
c) \(3x-\sqrt{x^2-2x+1}\)
Tìm ĐK để căn thức sau xác định:
a) \(\sqrt{x^2+3x-10}\)
b) \(\sqrt{\dfrac{4x-4-x^2}{5}}\)
c) \(\sqrt{x-4\sqrt{x-4}}\)
Tìm x để mỗi căn thức sau có nghĩa :
a) \(\sqrt{2x+7}\)