T=2^2010-(2^2009+2^2008+...+2^1+2^0)
Tính:
M= 2 ^2010 - (2^2009 + 2^2008 +...+ 2^1 + 2^0)
Đặt \(N=2^0+2^1+...+2^{2008}+2^{2009}\)
Suy ra: \(M=2^{2010}-N\)
Ta có: \(N=2^0+2^1+...+2^{2008}+2^{2009}\)
\(\Leftrightarrow2N=2+2^2+...+2^{2009}+2^{2010}\)
\(\Leftrightarrow N=2^{2010}-1\)
\(M=2^{2010}-N=2^{2010}-2^{2010}+1=1\)
Tính M=\(2^{2010}-(2^{2009}+2^{2008}+...+2^1+2^0)\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
Gọi \(N=2^{2009}+2^{2008}+...+2^1+2^0\)
\(2N=2^{2010}+2^{2009}+...+2^2+2^1\\ 2N-N=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\\ N=2^{2010}-2^0\\ N=2^{2010}-1\)
Thay vào ta được
\(M=2^{2010}-\left(2^{2010}-1\right)\\ M=2^{2010}-2^{2010}+1\\ M=1\)
Vậy \(M=1\)
Ta có :
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^0\right)\)
Đặt A=22009+22008+..+20
\(A=2^{2009}+2^{2008}+...+2^0\\ 2A=2^{2010}+2^{2009}+...+2^1\\ \Rightarrow2A-A=A=2^{2010}-2^0\\ \Rightarrow M=2^{2010}-\left(2^{2010}-2^0\right)\\ M=2^{2010}-2^{2010}+1\\ \Rightarrow M=1\)
Chúc bạn học tốt!
a) 2010/1+2009/2+2008/3+ ... +1/2010+2010 : 1+1/2+1/3+ ... +1/2010=
b) 1/2011+1/2010+1/2009+ ... +1/3+1/2 : 2010/1+2009/2+2008/3+ ... +1/2010=
2^2010-(2^2009+2^2008+...+2^1+2^0)
tính
M = \(2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
Đặt \(A=2^{2009}+2^{2008}+2^{2007}+...+2+1\\ \Rightarrow2A=2^{2010}+2^{2009}+2^{2008}+...+2^2+2\\ \Rightarrow2A-A=\left(2^{2010}+2^{2009}+2^{2008}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+2^{2007}+...+2+1\right)\\ \Rightarrow A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1=1\)
Tính: 2^2010 - (2^2009 + 2^2008+ .....+ 2^1 + 2^0)
Đặt A = 22009 + 22008 + ... + 21 + 20
2A = 22010 + 22009 + ... + 22 + 21
2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)
A = 22010 - 20
A = 22010 - 1
=> 22010 - (22009 + 22008 + ... + 21 + 20)
= 22010 - (22010 - 1)
= 22010 - 22010 + 1
= 1
Đặt A = 22009 + 22008 + ... + 21 + 20
2A = 22010 + 22009 + ... + 22 + 21
2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)
A = 22010 - 20
A = 22010 - 1
=> 22010 - (22009 + 22008 + ... + 21 + 20)
= 22010 - (22010 - 1)
= 22010 - 22010 + 1
= 1
M=2^2010-(2^2009+2^2008+...+2^1+2^0)
tính 2010*2010-2009*2009+2008*2008-........+2*2-1*1
tính M =22010-(22009+22008+...+21+20)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+....+2^1+2^0\right)\)
Đặt:
\(S=2^{2009}+2^{2008}+....+2^1+2^0\)
\(S=2^0+2^1+.....+2^{2008}+2^{2009}\)
\(2S=2\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(2S=2^1+2^2+.....+2^{2009}+2^{2010}\)
\(2S-S=\left(2^1+2^2+.....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(S=2^{2010}-2^0=2^{2010}-1\)
Thay S vào M ta có:
\(M=2^{2010}-\left(2^{2010}-1\right)\)
\(M=2^{2010}-2^{2010}+1=1\)
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1