7P\(^4\)-3\(P^2-P-3P^3\)=0
\(7P^4-3P^2-P-3P^3=0\)
\(7P^4-3P^2-P-3P^3=0\)
\(\Leftrightarrow7P^4+4P^3+P^2-7P^3-4P^2-P=0\)
\(\Leftrightarrow P^2\left(7P^2+4P+1\right)-P\left(7P^2+4P+1\right)=0\)
\(\Leftrightarrow\left(P^2-P\right)\left(7P^2+4P+1\right)=0\)
\(\Leftrightarrow P\left(P-1\right)\left(7P^2+4P+1\right)=0\)
Xét : \(7P^2+4P+1=7\left(x+\frac{2}{7}\right)^2+\frac{3}{7}>0\)
\(\Rightarrow P=0;P=1\)
Chúc bạn học tốt !!!
Cho p>q. Chứng tỏ rằng:
a) 3p + 1> 3q + 1;
b) 5(p – 3) > q- 3
c) 4– 7p < -7q
d) - 6- 2p < - 2q.
a: p>q
nên 3p>3q
=>3p+1>3q+1
c: p>q
nên -7p<-7q
=>-7p+4<-7q
cho p là số nguyên tố lớn hơn 2 . chứng minh 3p + 5 là hợp số
cho p là số nguyên tố lớn hơn 2. chứng minh 5p + 3 là hợp số
cho p là số nguyên tố lớn hơn 2 . chưng mih 7p + 5 là hợp số
cho p và p + 4 là các số nguyên tố lớn hơn 3 nhân p+ 8 là hợp số
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0
Tính giá trị của biểu thức: Q= P(-2) + 7P(6)
. Ta có: P(1)= 0, P(3)= 0, P(5)= 0 => 1,3,5 là nghiệm của pt, nên P(x) chứa nhân tử: (x-1) ; (x-3) ; (x-5)
. Vì P(x) bậc 4, có hệ số bậc cao nhất là 1 nên P(x) có dạng: \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
. \(Q=P\left(-2\right)+7P\left(-6\right)\) = \(\left(-2-1\right)\left(-2-3\right)\left(-2-5\right)\left(-2-a\right)+7\left(6-1\right)\left(6-3\right)\left(6-5\right)\left(6-a\right)\)
\(=210+105a+630-105a\) \(=840\)
. Vậy \(Q=840\)
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0. hãy tính giá trị của biểu thức Q=P(-2)+7P(6). + 210
\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)
Theo đề ta có:
\(\hept{\begin{cases}1+a+b+c+d=0\\81+27a+9b+3c+d=0\\625+125a+25b+5c+d=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c+d=-1\\27a+9b+3c+d=-81\\125a+25b+5c+d=-625\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-9\\b=23\\c=-15;\end{cases}d=-1}}\)
Cho p,q là hai số nguyên tố lớn hơn 5:
a) Tìm số dư khi chia 2018p - 2017q cho 3.
b) CMR: \(\frac{3p^5+5p^3+7p}{15}\)là số nguyên.
ta có : 2018p \(\equiv\)2p (mod 3)
Vì là SNT > 5 => p lẻ
=> 2p \(\equiv\)2 (mod 3)
2017q \(\equiv\)1 (mod 3)
=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)
Vậy 2018p - 2017q chia 3 dư 1
b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)
Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4
+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)
Từ (1) và (2) và (3;5) = 1 => 3p5 + 5p3 + 7p \(⋮\)15
=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0. hãy tính giá trị của biểu thức Q=P(-2)+7P(6).
P(1) = 0 ; P(3) = 0 ; P(5) = 0 nên 1 ; 3 ; 5 lần lượt là nghiệm của phương trình nên
P(x) chứa nhân tử (x-1), (x-3), (x-5)
vì P(x) bậc 4 có hệ số bậc cao nhất là một nên P(x) có dạng:
P(x) = (x-1)(x-3)(x-5)(x-a)
Q = P(-2) + 7P(6)
= (-2-1)(-2-3)(-2-5)(-2-a) + 7(6-1)(6-3)(6-5)(6-a)
= 210 + 105a + 7(90 - 15a)
= 210 + 105a + 630 - 105a
= 840
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0 ; P(3) = 0 ; P(5) = 0.
Hãy tính giá trị của biểu thức: Q = P(-2) + 7P(6)
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0 ; P(3) = 0 ; P(5) = 0.
Hãy tính giá trị của biểu thức: Q = P(-2) + 7P(6)