Những câu hỏi liên quan
NT
Xem chi tiết
NT
13 tháng 8 2016 lúc 21:11

cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?

Bình luận (0)
NT
13 tháng 8 2016 lúc 21:12

chứng minh:

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n

Bình luận (0)
OO
14 tháng 8 2016 lúc 15:42

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=\left(6x^2-6x^2\right)+\left(33x-10x-14x-9x\right)-\left(55+21\right)\)

\(=-76\)

Vậy A không phụ thuộc vào biến x (đpcm)

Bình luận (0)
H24
Xem chi tiết
NT

1: \(P=\left(\dfrac{2x}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3x}\right)\)

\(=\left(\dfrac{2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x\cdot\left(x-3\right)}\right)\)

\(=\dfrac{2x-x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2\left(x-3\right)-x+1}{x\left(x-3\right)}\)

\(=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(x-3\right)}{2x-6-x+1}\)

\(=\dfrac{x}{x-5}\)

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NL
2 tháng 6 2019 lúc 16:32

ĐKXĐ:...

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)

\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)

Bình luận (0)
NK
Xem chi tiết
NT
7 tháng 12 2023 lúc 20:50

\(B=2\cdot\left(x^3+1\right)\cdot9x^2-3x+1-54x^3\)

\(=18x^2\left(x^3+1\right)-3x+1-54x^3\)

\(=18x^5+18x^2-3x+1-54x^3\)

Biểu thức này có phụ thuộc vào x nha bạn

Bình luận (0)
NT
Xem chi tiết
AN
Xem chi tiết

đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)

Bình luận (1)
 Khách vãng lai đã xóa

\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)

TH1: \(x-1=0\Leftrightarrow x=1\)

TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TV
Xem chi tiết
TT
10 tháng 10 2020 lúc 17:15

\(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)

\(=x^3y+xy^3-2x^2y^2\)

\(=xy\left(x^2+y^2-2xy\right)\)

\(=xy\left(x-y\right)^2=VP\)

Bình luận (0)
 Khách vãng lai đã xóa