Những câu hỏi liên quan
H24
Xem chi tiết
DH
1 tháng 6 2018 lúc 14:54

- Vì n là số tự nhiên lẻ

=> 24n có tận cùng là 24

=> 24n + 1 có tận cùng là 24 + 1 = 25 

Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)

- Vì 24 : 23 = 1 (dư 1)

=> 24n : 23 cũng sẽ dư 1

=> 24n + 1 : 23 sẽ có dư là 2

=> 24n + 1 sẽ không chia hết cho 23  (2)

Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ

Bình luận (0)
PD
Xem chi tiết
NA
Xem chi tiết
PT
29 tháng 5 2017 lúc 5:59

+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)

Bình luận (0)
SF
29 tháng 5 2017 lúc 6:55

vì N là 1 số tự nhiên lẻ

\(\Rightarrow24^n\)có chử số tận cùng là 24

\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)

bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)

Bình luận (0)
GK
Xem chi tiết
MA
Xem chi tiết
NX
16 tháng 1 2021 lúc 19:20

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Bình luận (0)
H24
15 tháng 7 2024 lúc 10:35

Chỉ

Bình luận (0)
AA
Xem chi tiết
H24
29 tháng 7 2016 lúc 20:50

242+1=(24+1)(24-1)

25.23

25chia het cho 25 

suy ra 25.23 chia hetcho 25

Bình luận (0)
H24
29 tháng 7 2016 lúc 20:50

ma cho mk hoi n o dau vay

Bình luận (0)
NH
Xem chi tiết
GD
21 tháng 2 2021 lúc 20:52

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.  

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
AH
25 tháng 2 2021 lúc 17:01

Lời giải:

a) 

\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)

\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)

\(\equiv 23.2^n\equiv 0\pmod {23}\)

Ta có đpcm.

b) 

\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$

Mặt khác:

Nếu $n=3k+1$:

$2^{2n+2}+24n+14=2^{6k+4}+72k+38$

$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$

Nếu $n=3k$:

$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$

$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$

Nếu $n=3k+2$:

$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$

$\equiv 63+72k\equiv 0\pmod 9$

Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)

Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)

 

Bình luận (0)