Tính:
3(2^2+1)(2^4+1)(2^8+2)(2^16+1)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính nhanh
C=50^2-49^2+48^2-47^2+...+2^2-1^2
D=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
E=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)
=50+49+48+............+1
=(50+1)50=2550:2=1275
d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1
e;=(3-1)(3+1)(3^2+1)...........(3^16+1)
=(3^2-1)(3^2+1)..............(3^16+1)
=(3^16-1)(3^16+1)=3^32-1
tu tinh ket qua luy thua tao khong thua hoi dau
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32
Tính
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32 = 56744
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32 = 56744
#nhớ tk
bài 6:tính nhanh
7)1\(^2\)-2\(^2\)+3\(^2\)-4\(^2\)+....-2004\(^2\)+2005\(^2\)
8) (2+1)(2\(^2\)+1)(2\(^4\)+1)(2\(^8\)+1)(2\(^{16}\)+1)(2\(^{32}\)+1)-2\(^{64}\)
7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)
\(A=-\left(1+2+3+...+2004\right)+2005^2\)
\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)
\(A=-1002.2005+2005^2\)
\(A=2005\left(2005-1002\right)=2005.1003=2011015\)
8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{64}-1\right)-2^{64}\)
\(B=-1\)
chứng tỏ rằng
b= 1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
b tính nhanh
A= 1+1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+ 1/16(1+2+3+...+16)
b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)
\(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
\(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)
\(=1+1,5+2+...+8,5\)
\(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)
B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)
Vậy 1/8<2 hay 1/8<16/8
giúp mình nha,thanks
Tính nhanh 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
Tính nhanh
a) 2.4.(3^2+1)(3^4+1)...(3^16+1)
b) 2.(3+1).(3^2+1)(3^4+1)...(3^16+1)
c) 8.(3^2+1)(3^4+1)...(3^16+1)
TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\
AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO
a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
b) \(2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
tính nhanh
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow2^{64}-1\)
rút gọn biểu thức
a) A=16^8 -1/(2+1)(2^2+1)(2^4+1)(2^8+1(3^16+1)
b) B=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/9^16-1
giúp mk vs ah mk đang cần gấp ah
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
tính
( 1/3 - 1/7 - 1/13 ) / ( 2/3 - 2/7 - 2/13 ) x ( 3/4 - 3/16 - 3/64 - 3/256 ) / ( 1- 1/4 - 1/16 - 1/64 ) + 5/8