Chứng minh rằng:Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
Chứng minh rằng:Nếu a,b,c > 0 thì: \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b+c}{2}\)
Áp dụng BĐT BSC:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)
\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)
\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Đẳng thức xảy ra khi \(a=b=c\)
4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)
Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)
⇒ Cộng lại vế với vế :
4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)
cho \(\dfrac{a^2+b^2}{c^2+d^2}\)= \(\dfrac{ab}{cd}\).Chứng minh rằng: hoặc \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}\)= \(\dfrac{d}{c}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
CHÚC BẠN HỌC TỐT!!
\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )
Ta đặt:
\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk
a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)
Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
ab=cdab=cd=>ac=bdac=bd( áp dụng tỉ lệ thức )
Ta đặt:
ac=bd=kac=bd=k => a=ck ; b=dk
a) abcd=ck.dkcd=k2.(c.d)c.d=k2abcd=ck.dkcd=k2.(c.d)c.d=k2 (1)
(a+b)2(c+d)2=(ck+dk)2(c+d)2=k2.(c+d)2(c+d)2=k2(a+b)2(c+d)2=(ck+dk)2(c+d)2=k2.(c+d)2(c+d)2=k2 (2)
Từ (1) và (2) suy ra abcd=(a+b)2(c+d)2abcd=(a+b)2(c+d)2
b) a2+b2c2+d2=(ck)2+(dk)2c2+d2=c2k2+d2k2c2+d2=k2.(c2+d2)c2+d2=k2a2+b2c2+d2=(ck)2+(dk)2c2+d2=c2k2+d2k2c2+d2=k2.(c2+d2)c2+d2=k2 (3)
Từ (1) và (3) suy ra abcd=a2+b2c2+d2
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b, c, d ≠ 0 , b + d ≠ 0). Chứng minh rằng: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Theo đề bài ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )
Theo tính chất dãy tỉ số bằng nhau ta có :
\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( 2 )
Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )
Từ ( 2 ) , ( 3 )
= > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )
Chứng minh rằng : Nếu \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) thì \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mọi người ơi giúp mik với ai làm đc mik tick cho
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
Chứng minh:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
không biết có đúng không.
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\left(1\right)\)
Từ điều 1 ta có:\(\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{c.\left(a+b\right)}{a.\left(c+d\right)}=\dfrac{b.\left(c+d\right)}{d.\left(a+b\right)}\)
\(\Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{cb+bd}{ad+bd}=\dfrac{ca-bd}{ca+bd}=\dfrac{1}{1}\)
\(\Rightarrow ca+cb=ca+ad\Rightarrow cb=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)
Chúc bạn học tốt!!!